| dc.relation | AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and statistical manual of
mental disorders (DSM-5). [S.l.]: American Psychiatric Publishing, 2013.
ARLOT, Sylvain; CELISSE, Alain. A survey of cross-validation procedures for model
selection. Statistics Surveys, Amer. Statist. Assoc., the Bernoulli Soc., the Inst. Math.
Statist., e the Statist. Soc. Canada, v. 4, none, p. 40–79, 2010. DOI:
10.1214/09-SS054. Disponível em: <https://doi.org/10.1214/09-SS054>.
BARBETTA, P. A.; REIS, M. M.; BORNIA, A. C. Estatística para cursos de engenharia
e informática. Atlas, 2008.
BERSCH, Rita. Introdução à tecnologia assistiva. Porto Alegre: CEDI, v. 21, p. 1–20,
2008.
BEUKELMAN, David R.; MIRENDA, Pat. Augmentative and Alternative
Communication: Supporting Children & Adults with Complex Communication
Needs. 4. ed. Baltimore: Paul H. Brookes Publishing, 2013.
BISCHL, Bernd et al. Hyperparameter Optimization: foundations, algorithms, best
practices and open challenges. arXiv (Cornell University), jan. 2021. DOI:
10.48550/arxiv.2107.05847. Disponível em:
<https://arxiv.org/abs/2107.05847>.
BREIMAN, Leo. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, jan. 2001.
DOI: 10.1023/a:1010933404324. Disponível em:
<https://doi.org/10.1023/a:1010933404324>.
BURGES, Christopher J.C. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, v. 2, n. 2, p. 121–167, jan.
1998. DOI: 10.1023/a:1009715923555. Disponível em:
<https://doi.org/10.1023/a:1009715923555>.
CHAWLA, Nitesh V. et al. SMOTE: Synthetic Minority Over-sampling Technique.
Journal of Artificial Intelligence Research, v. 16, p. 321–357, 2002. DOI:
10.1613/jair.953.
CHEN, Tianqi; GUESTRIN, Carlos. XGBoost: A Scalable Tree Boosting System. In:
PROCEEDINGS of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. San Francisco, California, USA: Association for
Computing Machinery, 2016. (KDD ’16), p. 785–794. ISBN 9781450342322. DOI:
10.1145/2939672.2939785. Disponível em:
<https://doi.org/10.1145/2939672.2939785>.
COOK, Albert M; POLGAR, Janice Miller. Assistive technologies-e-book:
principles and practice. [S.l.]: Elsevier Health Sciences, 2014.
CRESWELL, J. W. Research design: Qualitative, quantitative, and mixed
methods approaches. [S.l.]: Sage publications, 2014.
DELL, A.G.; NEWTON, D.A.; PETROFF, J.G. Assistive Technology in the
Classroom: Enhancing the School Experiences of Students with Disabilities.
[S.l.]: Pearson Merrill Prentice Hall, 2008. ISBN 9780131191648. Disponível em:
<https://books.google.com.br/books?id=Fly1OwAACAAJ>.
DI AUTOMATICA E INFORMATICA, Dipartimento et al. Exploring the Adaptability
of Large Speech Models to Non-Verbal Vocalization task. [S.l.: s.n.], jan. 2025.
Disponível em: <https://hdl.handle.net/11583/3002059>.
DOMINGOS, Pedro. A few useful things to know about machine learning.
Communications of the ACM, v. 55, n. 10, p. 78–87, 25 set. 2012. DOI:
10.1145/2347736.2347755. Disponível em:
<https://doi.org/10.1145/2347736.2347755>.
FAWCETT, Tom. An Introduction to ROC Analysis. Pattern Recognition Letters,
v. 27, n. 8, p. 861–874, 2006. DOI: 10.1016/j.patrec.2005.10.010.
FENG, Tiantian et al. Egocentric Speaker Classification in Child-Adult Dyadic
Interactions: From Sensing to Computational Modeling. [S.l.: s.n.], 2025. arXiv:
2409.09340 [cs.SD]. Disponível em: <https://arxiv.org/abs/2409.09340>.
FRIEDMAN, Jerome H. Greedy function approximation: a gradient boosting machine.
Annals of statistics, JSTOR, p. 1189–1232, 2001.
GIL, A.C. Como elaborar projetos de pesquisa. [S.l.]: Atlas, 2002. ISBN
9788522431694. Disponível em:
<https://books.google.com.br/books?id=X4uvAAAACAAJ>.
GOUYON, Fabien; PACHET, Francois; DELERUE, Olivier. On the Use of
Zero-Crossing Rate for an Application of Classification of Percussive Sounds, ago.
2002.
JOHNSON, Kristina T.; NARAIN, Jaya et al. ReCANVo: A database of real-world
communicative and affective nonverbal vocalizations. Scientific Data, Springer
Nature, v. 10, p. 523, 2023.
JOHNSON, Kristina T.; O’BRIEN, Amanda M. et al. Affective Ratings of Nonverbal
Vocalizations Produced by Minimally-Speaking Individuals: What Do Naive Listeners
Perceive? In: IEEE. 10TH International Conference on Affective Computing and
Intelligent Interaction (ACII). [S.l.: s.n.], 2022. P. 1–8.
KE, Guolin et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.
In . Advances in Neural Information Processing Systems. [S.l.]: Curran
Associates, Inc., 2017. v. 30. Disponível em: <https://proceedings.neurips.cc/pap
er_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf>.
KONECKI, Mario; LOVRENČIĆ, Sandra; JERVIS, Keith. The use of assistive
technology in education of programming. In: 2016 ICBTS International Academic
Research Conference Proceedings, Boston, USA. [S.l.: s.n.], 2016. P. 1–11.
KOUDOUNAS, Alkis et al. voc2vec: A Foundation Model for Non-Verbal
Vocalization. [S.l.: s.n.], fev. 2025. DOI: 10.48550/arXiv.2502.16298.
LAZAR, Jonathan; GOLDSTEIN, Daniel F; TAYLOR, Anne. Ensuring digital
accessibility through process and policy. [S.l.]: Morgan kaufmann, 2015.
MARCONI, M. de A.; LAKATOS, E. M. Fundamentos de metodologia científica.
[S.l.]: Atlas, 2003.
MCFEE, Brian et al. librosa: Audio and Music Signal Analysis in Python. Proceedings
of the Python in Science Conferences, p. 18–24, jan. 2015. DOI:
10.25080/majora-7b98e3ed-003. Disponível em:
<https://doi.org/10.25080/majora-7b98e3ed-003>.
NARAIN, Jaya et al. Nonverbal Vocalizations as Speech: Characterizing
Natural-Environment Audio from Nonverbal Individuals with Autism. Laughter
Workshop Proceedings, MIT Media Lab, 2020.
PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, v. 12, p. 2825–2830, 2011.
SHAW, Kelly A. et al. Prevalence and early identification of autism spectrum disorder
among children aged 4 and 8 years — Autism and Developmental Disabilities
Monitoring Network, 16 sites, United States, 2022. MMWR Surveillance Summaries,
v. 74, n. 2, p. 1–22, abr. 2025. DOI: 10.15585/mmwr.ss7402a1. Disponível em:
<https://doi.org/10.15585/mmwr.ss7402a1>.
TRAN, van-Thuan; TSAI, Wei-Ho. Identification of Non-Speaking and
Minimal-Speaking Individuals Using Nonverbal Vocalizations. IEEE Access, v. 12,
p. 68954–68967, 2024. DOI: 10.1109/ACCESS.2024.3398584. | pt_BR |