Mostrar registro simples

dc.creatorSobral, Albert Alvin Bandeira
dc.date.accessioned2026-02-12T12:35:14Z
dc.date.available2026-02-12T12:35:14Z
dc.date.issued2025-11-13
dc.identifier.citationSOBRAL, Albert Alvin Bandeira. Contagem automática de ovos de mosquitos aedes em ovitrampas com visão computacional baseada em aprendizado de máquina. 2025. 64f. Trabalho de Conclusão (Curso Superior Tecnológico em Analise e Desenvolvimento Sistemas). - Instituto Federal de Ciência e Tecnologia de Pernambuco, Recife. 2026.pt_BR
dc.identifier.urihttps://repositorio.ifpe.edu.br/xmlui/handle/123456789/1988
dc.description.abstractThe present study proposes the automation of egg counting for Aedes aegypti and Aedes albopictus mosquitoes, vectors of arboviruses, through computer vision based on machine learning. Using images from ovitraps provided by Fiocruz-PE, fine-tuning was applied to advanced models (YOLOv10, YOLOv11, and Faster R-CNN) to overcome challenges related to high variability and noise in the images. The solution reduces manual effort and analysis time, contributing to more effective strategies for controlling diseases such as dengue, zika, and chikungunya.pt_BR
dc.format.extent64f.pt_BR
dc.languagept_BRpt_BR
dc.relationDalmar Aboyomi and Cleo Daniel. A comparative analysis of modern object detection algorithms: Yolo vs. ssd vs. faster r-cnn. ITEJ (Information Technology Engineering Journals), 8(2):96 – 106, Dec. 2023. doi: 10.24235/itej.v8i2.123. URL https://www. syekhnurjati.ac.id/journal/index.php/itej/article/view/123. Leon Diniz Alves. Desenvolvimento de um sistema de baixo custo para con- tagem autom ́atica de ovos de aedes aegypti utilizando t ́ecnicas de proces- samento de imagem, 2016. Disserta ̧c ̃ao de Mestrado, Funda ̧c ̃ao Getulio Vargas, Escola de Matem ́atica Aplicada. https://repositorio.fgv.br/items/ f1255e89-b525-49c0-b639-35150ea2d199. Lihao Liu Ao Wang, Hui Chen et al. Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458, 2024. Ima Aparecida Braga and Denise Valle. Aedes aegypti: hist ́orico do controle no brasil. Epidemiologia e Servi ̧cos de Sa ́ude, 16:113–118, 06 2007. ISSN 1679-4974. Maria Rita Donal ́ısio and Carmen Moreno Glasser. Vigilˆancia entomol ́ogica e controle de vetores do dengue. Revista Brasileira de Epidemiologia, 5(3):259–279, Dec 2002. ISSN 1415-790X. doi: 10.1590/S1415-790X2002000300005. URL https://doi.org/ 10.1590/S1415-790X2002000300005. Apache Software Foundation. Netbeans 22, 2025. URL https://netbeans.apache.org/. An integrated development environment (IDE) for Java and other languages, providing advanced features for coding and debugging. Julie Gaburro, Jean-Bernard Duchemin, Prasad N. Paradkar, Saeid Nahavandi, and Asim Bhatti. Assessment of icount software, a precise and fast egg counting tool for the mosquito vector aedes aegypti. Parasites & Vectors, 9(1):590, Nov 2016. ISSN 1756-3305. doi: 10.1186/s13071-016-1870-1. URL https://doi.org/10.1186/ s13071-016-1870-1. John D. Hunter. Matplotlib: A 2d graphics environment, 2007. URL https://matplotlib.org/. Matplotlib is a comprehensive library for creating static, anima- ted, and interactive visualizations in Python. Intel Corporation. CVAT: Computer Vision Annotation Tool. https://cvat.ai/, 2018. Acessado em: 31 dez. 2024. Nouman Javed, Adam J. L ́opez-Denman, Prasad N. Paradkar, and Asim Bhatti. Egg- countai: a convolutional neural network-based software for counting of aedes aegypti mosquito eggs. Parasites & Vectors, 16(1):341, Oct 2023. ISSN 1756-3305. doi: 10.1186/s13071-023-05956-1. URL https://doi.org/10.1186/s13071-023-05956-1. Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024. URL https://github.com/ ultralytics/ultralytics. Michael I. Jordan and Tom M. Mitchell. Machine learning: Trends, perspectives, and prospects, 2015. URL https://www.science.org/doi/10.1126/science.aaa8415. Kaggle. Kaggle. https://www.kaggle.com/, 2025. Accessed: 2025-02-19. Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local minima?, 2018. URL https://arxiv.org/abs/1802.06175. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein- berger, editors, Advances in Neural Information Processing Systems, volume 25. Cur- ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/ paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf. Lightning AI. Lightning ai. https://lightning.ai/, 2025. Accessed: 2025-01-05. Tsung-Yi Lin, Piotr Doll ́ar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection, 2017. https://arxiv.org/ abs/1612.03144. Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.05101. Apache Maven. Apache maven. https://maven.apache.org/, 2025. A build automation tool used for dependency management. 61 Microsoft. Visual studio code, 2025. URL https://code.visualstudio.com/. A power- ful, lightweight code editor with support for a wide range of programming languages and tools. Meuse Jr. Nogueira de O., F ́abio de L. F. Papais, and Mayanne Gomes da Silva. Thresholding-based computer vision techniques on automatic counting of aedes mos- quitoes eggs. Department of Electronics, Federal Institute of Education, Science and Technology of Pernambuco, Recife, Brazil, 2021. URL mailto:meusejunior@recife. ifpe.edu.br. Received 00 Month 2021; revised 00 Month 2021. ONNX. Open neural network exchange (onnx). https://onnx.ai/, 2025. An open standard for representing machine learning models. OpenCV. Opencv library. https://opencv.org/, 2024. Version 4.10.0. Oracle. Java se documentation. https://docs.oracle.com/en/java/javase/, 2025. Includes information about Java Swing (javax.swing package). Organiza ̧c ̃ao Pan-Americana da Sa ́ude - OPAS. Alerta epi- demiol ́ogico: Aumento de casos de dengue na regi ̃ao das am ́ericas, outubro . URL https://www.paho.org/pt/documentos/ alerta-epidemiologico-aumento-casos-dengue-na-regiao-das-americas-7-outubro-2024. Acessado em: 17 fev. 2025. Nobuyuki Otsu. A threshold selection method from gray-level histograms, 1979. https://web-ext.u-aizu.ac.jp/course/bmclass/documents/otsu1979.pdf. Jinseong Park, Hoki Kim, Yujin Choi, and Jaewook Lee. Differentially private sharpness- aware training, 2023. URL https://arxiv.org/abs/2306.05651. Edgar Oshiro Paulo da Silva Almeida, Ricardo Augusto dos Passos. Curso de identifica ̧c ̃ao de culic ́ıdeos de importˆancia m ́edica, 2018. Apostila de treinamento. Ana Paula Miranda Mundim Pombo. Aedes aegypti: Morfologia, morfometria do ovo, desenvolvimento embrion ́ario e aspectos relacionados `a vigilˆancia entomol ́ogica no mu- nic ́ıpio de s ̃ao paulo, December 2016. URL https://doi.org/10.11606/T.10.2017. tde-20032017-183203. Tese de Doutorado, Faculdade de Medicina Veterin ́aria e Zoo- tecnia, Universidade de S ̃ao Paulo, S ̃ao Paulo. 62 Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015. URL http://arxiv.org/abs/1506.02640. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real- time object detection with region proposal networks, 2015a. https://arxiv.org/abs/ 1506.01497. Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real- time object detection with region proposal networks. CoRR, abs/1506.01497, 2015b. URL http://arxiv.org/abs/1506.01497. Trello. Trello. https://trello.com/, 2025. Accessed: 2025-02-19. Ultralytics. Yolo by ultralytics: The state-of-the-art object detection framework. https: //ultralytics.com/, 2024. Accessed: 2024-12-31. Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec- tron2. https://github.com/facebookresearch/detectron2, 2019. Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015. doi: 10.48550/arXiv.1511.07122. https:// arxiv.org/abs/1511.07122.pt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectSistema de computaçãopt_BR
dc.subjectAedespt_BR
dc.subjectOvos de mosquitospt_BR
dc.subjectVisão computacionalpt_BR
dc.subjectAprendizagem de máquinapt_BR
dc.titleContagem automática de ovos de mosquitos Aedes em ovitrampas com visão computacional baseada em aprendizado de máquinapt_BR
dc.typeTCCpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0242768633357093pt_BR
dc.contributor.advisor1Oliveira Júnior , Meuse Nogueira de
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8250068675147894pt_BR
dc.contributor.referee1Oliveira Júnior, Meuse Nogueira de
dc.contributor.referee2Guedes, Paulo Abadie
dc.contributor.referee3Tavares, Eduardo Antônio Guimarães
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8250068675147894pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2543620368514830pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1233156130663707pt_BR
dc.publisher.departmentRecifept_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO::SOFTWARE BASICOpt_BR
dc.description.resumoO presente estudo prop ̃oe a automatiza ̧c ̃ao da contagem de ovos de mosquitos Aedes aegypti e Aedes albopictus, vetores de arboviroses, por meio de vis ̃ao computacional ba- seada em aprendizado de m ́aquina. Utilizando imagens de ovitrampas fornecidas pelo instituto Fiocruz-PE, foram aplicados fine-tuning em modelos avan ̧cados (YOLOv10, YO- LOv11 e Faster R-CNN) para superar desafios relacionados `a alta variabilidade e ru ́ıdos nas imagens. A solu ̧c ̃ao reduz o esfor ̧co manual e o tempo de an ́alise, contribuindo para estrat ́egias mais eficazes no controle de doen ̧cas como dengue, zika e chikungunya.pt_BR


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples