| dc.relation | AHMED, F.; BORST, M. Monitoring infiltration rates with time domain reflectometers. Water, v. 11, n. 7, p. 1401, 2019. AHMED, F.; GULLIVER, J. S.; NIEBER, J. L. Field infiltration measurements in stormwater infiltration practices. Vadose Zone Journal, v. 15, n. 7, 2021. ANKENY, M. D.; KASPAR, T. C.; HORTON, R. Design for an automated tension infiltrometer. Soil Science Society of America Journal, v. 52, p. 893-896, 1988. BACH, L. B.; WIERENGA, P. J.; WARD, T. J. Estimation of the Philip Infiltration Parameters from Rainfall Simulation Data. Soil Science Society of America Journal, v. 50, n. 5, p. 1319-1323, 1986. BALL, B. C.; SCHJØNNING, P. Air permeability. In: DANE, J. H.; TOPP, G. C. (Eds.). Methods of soil analysis: Part 4 Physical methods. Madison: Soil Science Society of America, 2002. p. 1141-1158. BOUWER, H. Intake rate: cylinder infiltrometer. In: KLUTE, A. (Ed.). Methods of soil analysis: Part 1 Physical and mineralogical methods. 2. ed. Madison: American Society of Agronomy, 1986. p. 825-844. BROOKS, R. H.; REEVE, R. C. Measurement of Air and Water Permeability of Soils. Transactions of the ASAE, v. 2, n. 1, p. 12-14, 1959. CECILIA, A.; SUDARSANAN, S. K. A survey of wireless technologies for smart grid. In: INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, Chennai. Anais [...]. Chennai: IEEE, 2016. p. 1-6. CUEVA, A. et al. Soil respiration in Mexico: Advances and future directions. Terra Latinoamericana, v. 34, n. 3, p. 253-269, 2016. DAVID, Sunith John et al. A novel methodology for infiltration model studies. International Journal of Engineering Technologies and Management Research, v. 5, n. 3, p. 190-199, mar. 2018. DOI: 10.5281/zenodo.1218178. Disponível em: https://journals.indexcopernicus.com/api/file/viewByFileld/235135.pdf. Acesso em: 21 jun. 2025. DI PRIMA, S. Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, v. 118, p. 390-395, 2015.
DOHNAL, M. et al. Three-Dimensional Numerical Analysis of Water Flow Affected by Entrapped Air: Application of Noninvasive Imaging Techniques. Vadose Zone Journal, v. 12, n. 1, 2013. FAYBISHENKO, B. A. Enhanced infiltration in arid zones: a review. Journal of Hydrology, v. 164, n. 1-4, p. 1-34, 1995. FISHER, D. K.; GOULD, P. J. Open-source hardware is a low-cost alternative for scientific instrumentation and research. Modern Instrumentation, v. 1, n. 2, p. 8-20, 2012. FREEZE, R. A.; CHERRY, J. A. Groundwater. Englewood Cliffs: Prentice-Hall, 1979. GLIŃSKI, J.; LIPIEC, J. Soil physical conditions and plant roots. Boca Raton: CRC Press, 1990. HORTON, R. E. An approach toward a physical interpretation of infiltration-capacity. Soil Science Society of America Proceedings, v. 5, p. 399-417, 1940. HUANG, M.; RODGER, H.; BARBOUR, S. L. An evaluation of air permeability measurements to characterize the saturated hydraulic conductivity of soil reclamation covers. Canadian Journal of Soil Science, v. 95, n. 1, p. 15-26, 2015. IVERSEN, B. V. et al. In situ, on-the-fly characterization of soil aeration. Soil Science, v. 166, n. 7, p. 453-464, 2001. KIRKHAM, D. Field method for determination of air permeability of soil in its undisturbed state. Soil Science Society of America Proceedings, v. 11, p. 93-99, 1946. LASSABATÈRE, L. et al. Beerkan estimation of soil transfer parameters through infiltration experiments-BEST. Soil Science Society of America Journal, v. 70, n. 2, p. 521-532, 2006. METER GROUP. Field saturated hydraulic conductivity-why is it so difficult? METER Group, [s.d.]. Disponível em: https://metergroup.com/measurement-insights/field-saturated-hydraulic-conductivity-why-is-it-so-difficult/. Acesso em: 21 jun. 2025.
MOREL-SEYTOUX, H. J.; BILLICA, J. A. A two-phase flow model for the infiltration process. Hydrological Sciences Journal, v. 30, n. 4, p. 479-496, 1985. NXP. MPxx5004, 0 to 3.92 kPa, Differential and Gauge, Integrated Pressure Sensor. Data Sheet: Technical Data Rev. 12.1. Freescale Semiconductor, 2015. POULSEN, T. G. et al. Spatial and temporal dynamics of air permeability in a sandy loam soil. Soil Science, v. 166, n. 3, p. 153-165, 2001. RANDOM NERD TUTORIALS. ESP32 Data Logging Temperature to MicroSD Card. 2024. Disponível em: https://randomnerdtutorials.com/esp32-data-logging-temperature-to-microsd-card/. Acesso em: 26 jun. 2025. RIVERSIDE COUNTY. Low Impact Development BMP Design Handbook. 2011. RODRIGUES, S. Permeabilidade ao ar em Latossolo Vermelho sob plantio direto e preparo convencional. 2009. 114 f. Tese (Doutorado em Agronomia) - Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2009. SANTOS, R.; SANTOS, S. ESP32: Guide for MicroSD Card Module using Arduino IDE. Random Nerd Tutorials, 2021. Disponível em: https://randomnerdtutorials.com/esp32-microsd-card-arduino/. Acesso em: 26 jun. 2025. SILVA, Á. P. da et al. Determinação da permeabilidade ao ar em amostras indeformadas de solo pelo método da pressão decrescente. Revista Brasileira de Ciência do Solo, v. 33, n. 6, p. 1565-1574, 2009. SNEDECOR, G. W.; COCHRAN, W. G. Statistical methods. 8. ed. Ames: Iowa State University Press, 1989. SWEENEY, D. W. et al. Soil physical and chemical properties as affected by tillage and nitrogen fertilization. Soil Science Society of America Journal, v. 70, n. 2, p. 487-494, 2006. THALHEIMER, M. A low-cost electronic tensiometer system for continuous monitoring of soil water potential. Journal of Agricultural Engineering, v. 44, n. 3, p. e16, 2013. TORLAPATI, J. Horton's Model. [s.d.]. Disponível em: https://www.torlapati.com/resources/wre/Hortons%20Model.pdf. Acesso em: 10 jul. 2025. VOGELER, I. et al. The effect of compaction on air and water transport properties of a volcanic ash soil. Soil and Tillage Research, v. 89, n. 1, p. 76-87, 2006. WANG, Z. et al. Two phase flow infiltration equations accounting for air entrapment. Water Resources Research, v. 33, n. 12, p. 2759-2767, 1997. | pt_BR |