| dc.relation | ALVES, I. R. F. S. Análise experimental do potencial de geração de biogás em
resíduos sólidos urbanos. 2008. 117 f. Dissertação (Mestrado em Engenharia Civil) -
Universidade Federal de Pernambuco, Recife, 2008. Disponível em:
https://repositorio.ufpe.br/handle/123456789/5078. Acesso em: 10 jul. 2024.
AKYOL, Ç. In search of the optimal inoculum to substrate ratio during anaerobic
co-digestion of spent coffee grounds and cow manure. Waste Management &
Research, v. 38, n. 11, p. 1278-1283, 2020.
https://doi.org/10.1177/0734242X20914731. Acesso em: 10 jul. 2024.
ANGELIDAKI, I. et al. Defining the biomethane potential (BMP) of solid organic
wastes and energy crops: a proposed protocol for batch assays. Water Science and
Technology, v. 59, n. 5, p. 927-934, 2009. https://doi.org/10.2166/wst.2009.040.
Acesso em: 11 jul. 2024.
AUER, A. et al. Agricultural anaerobic digestion power plants in Ireland and
Germany: policy and practice. Journal of the Science of Food and Agriculture, v. 97,
n. 3, p. 719-723, 2017. https://doi.org/10.1002/jsfa.8005.
AWORANTI, O. A. et al. Decoding Anaerobic Digestion: A Holistic Analysis of
Biomass Waste Technology, Process Kinetics, and Operational Variables. Energies,
v. 16, n. 8, p. 3378, 2023. https://doi.org/10.3390/en16083378.
BANDEIRA, F. J. S. et al. Potential use of palm oil and cocoa waste biomass as
source of energy generation by gasification system in the state of Pará, Brazil.
Engenharia Agrícola, v. 43, 2023.
https://doi.org/10.1590/1809-4430-Eng.Agric.v43nepe20220151/2023. Acesso em:
15 abr. 2025.
BÖJTI, T. et al. Pretreatment of poultry manure for efficient biogas production as
monosubstrate or co-fermentation with maize sillage and corn stover. Anaerobe, v.
46, p. 138-145, 2017. https://doi.org/10.1016/j.anaerobe.2017.03.017.
BRANCOLI, P. et al. Compositional Analysis of Street Market Food Waste in Brazil.
Sustainability, v. 14, 2022. https://doi.org/10.3390/su14127014.
BRITO, E. P. L. Avaliação da biodegradação e geração de biogás de resíduos
envelhecidos sob condições de reatores experimentais. 2015. 130 f. Dissertação
(Mestrado em Engenharia Civil) – Universidade Federal de Pernambuco, Recife,
2015. Disponível em: https://repositorio.ufpe.br/handle/123456789/14351. Acesso
em: 15 abr. 2025.
BRITO-PAIVA, E. P. L. Estudo Técnico do Aproveitamento de Resíduos Orgânicos
do Centro de Abastecimento e Logística do Estado de Pernambuco Visando a
Produção de Biogás. 2023. Tese (Doutorado em Engenharia Civil) – Universidade
Federal de Pernambuco, Recife, 2023. Disponível em:
https://repositorio.ufpe.br/handle/123456789/55911. Acesso em: 15 abr. 2025.
CATORZA, C. F.; VAN ELK, A. G. H. P.; PASSOS, L. H. S. Potential of carbon credits
generation from organic waste composting of large generators: an alternative to the
final disposal in sanitary landfills. Brazilian Journal of Environmental Science, v. 57,
n. 2, p. 206-214, 2022. https://doi.org/10.5327/Z2176-94781121. Acesso em: 15 jul.
2024
CEASA-PE – Centro de Abastecimento e Logística de Pernambuco. Plano de
Gerenciamento de Resíduos Sólidos (PGRS). Recife: CEASA-PE, 2017.
CHEN, L. et al. The progress and prospects of rural biogas production in China.
Energy Policy, v. 51, p. 58-63, 2012.
CHEN, Q.; LIU, T. Biogas system in rural China: upgrading from decentralized to
centralized? Renewable and Sustainable Energy Review, v. 78, p. 933-944, 2017.
https://doi.org/10.1016/j.rser.2017.04.113.
CHRISTO, G. L. et al. Potencial de produção de biogás e energia elétrica a partir de
resíduos de hortifruticultura em Colombo/PR. Biofix Scientific Journal, v. 3, n. 1, p.
72-83, 2018. DOI: dx.doi.org/10.5380/biofix.v3i1.56058.
CONAB – Companhia Nacional de Abastecimento. Boletim Hortigranjeiro, Brasília,
DF, v. 9, n. 3, mar. 2023. Disponível em:
https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/hortigranjeiros-pr
ohort/boletim-hortigranjeiro/boletim-hortigranjeiro-2023/boletim-hortigranjeiro-marco2023.pdf. Acesso em: 15 abr. 2025.
DE LIMA, A. L.; JUCÁ, J. F. T.; BRITO, A. R.; MELO, M. C. Estudos comparativos de
diferentes metodologias para determinação de umidade e sólidos voláteis aplicadas
em resíduos sólidos urbanos. In: SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA
SANITÁRIA E AMBIENTAL, 6., 2002, Vitória. Anais [...]. Vitória: [s. n.], 2002.
EBA – European Biogas Association. Statistical Report. 2017. Disponível em:
http://european-biogas.eu/2017/12/14/eba-statisticalreport-2017-published-soon/.
Acesso em: 30 nov. 2023.
EDWARDS, J. et al. A review of policy drivers and barriers for the use of anaerobic
digestion in Europe, the United States and Australia. Renewable and Sustainable
Energy Reviews, v. 52, p. 815-828, 2015. https://doi.org/10.1016/j.rser.2015.07.112.
EESS - European Energy Security Strategy, 2014. Communication from the
Commission to the European Parliament and the Council. COM(2014) 330 Final.
Bruxelas, Bélgica. Disponível em:
https://www.eesc.europa.eu/resources/docs/europeanenergy-security-strategy.pdf.
Acesso em: 11 nov. 2023.
EMERSON CLIMATE TECHNOLOGIES. The Food Wastage & Cold Storage
Infrastructure Relationship in India. 2013. Disponível em:
https://www.slideshare.net/snehasunder/the-foodwastage-cold-storage-infrastructure-
relationship-in-india-developing-realistic-solutions-report-by-emerson-clim. Acesso
em: 10 nov. 2023.
FSIN; Rede Global Contra Crises Alimentares. Relatório Global sobre Crises
Alimentares 2022. Roma: FAO, 2022. Disponível em:
https://openknowledge.fao.org/handle/20.500.14283/cb9997en. Acesso em: 15 abr.
2025.
FIRMO, A. L. B. Estudo numérico e experimental da geração de biogás a partir da
biodegradação de resíduos sólidos urbanos. 2013. 286 f. Tese (Doutorado em
Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2013. Disponível
em: https://repositorio.ufpe.br/handle/123456789/12875. Acesso em: 15 abr. 2025.
GANESH, R. et al. Anaerobic co-digestion of solid waste: Effect of increasing organic
loading rates and characterization of the solubilised organic matter. Bioresource
Technology, v. 130, p. 559-569, 2013. https://doi.org/10.1016/j.biortech.2012.12.119.
GHIMIRE, A.; FRUNZI, M.; NEUPANE, B.; SCHENK, T.; PINTER, E.; MAJUMDER,
A.; ZHOU, X. A review on biomethane production from co-digestion of organic
wastes. Environmental Reviews, v. 23, n. 1, p. 14-27, 2015.
IPCC – INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:
Cambridge University Press, 2021. Disponível em:
https://www.ipcc.ch/report/ar6/wg1. . Acesso em: 11 abr. 2025.
JHA, R. et al. Capture of Anti-Poverty Programs: An Analysis of the National Rural
Employment Guarantee Program in India. Journal of Asian Economics, v. 20, n. 4, p.
456-464, 2008.
JI, C. et al. A review of the anaerobic digestion of fruit and vegetable waste. Applied
Biochemistry and Biotechnology, v. 183, p. 906–922, 2017.
https://doi.org/10.1007/s12010-017-2472-x.
JUCÁ, J. F. T.; LIMA, J. D.; MARIANO, M. O. H.; FIRMO, A. L.; LUCENA, L. F. L.;
ANDRADE LIMA, D. G. Análise das diversas tecnologias e disposição final de
resíduos sólidos urbanos no Brasil, Europa, Estados Unidos e Japão. Projeto
desenvolvido pelo Grupo de Resíduos Sólidos (GRS) da Universidade Federal de
Pernambuco (UFPE), Convênio FADE/BNDES – Banco Nacional de
Desenvolvimento Econômico e Social, 2013. Relatório técnico. Disponível em:
https://doi.org/10.13140/2.1.3547.8082. Acesso em: 15 abr. 2025.
KOVACIC, D. et al. Soybean straw, corn stover and sunflower stalk as possible
substrates for biogas production in Croatia: a review. Chemical and Biochemical
Engineering Quarterly, v. 31, n. 3, p. 187-198, 2017.
https://doi.org/10.15255/CABEQ.2016.985.
LAJDOVA, Z. et al. The impact of the biogas industry on the agricultural sector in
Germany. Czech Academy Agriculture Science, v. 62, n. 1, p. 1-8, 2016.
https://doi.org/10.17221/292/2015-AGRICECON. Acesso em: 15 abr. 2025.
LUCENA, T. V. Avaliação da geração de biogás sob diferentes condições de
biodegradação de resíduos alimentares. 2016. 131 f. Dissertação (Mestrado em
Engenharia Civil) – Universidade Federal de Pernambuco, Recife, 2016. Disponível
em: https://repositorio.ufpe.br/handle/123456789/23571. Acesso em: 15 abr. 2025.
LI, Y.; PARK, S. Y.; ZHU, J. Solid-state anaerobic digestion for methane production
from organic waste. Renewable and Sustainable Energy Reviews, v. 15, n. 1, p.
821-826, 2011. https://doi.org/10.1016/j.rser.2010.09.027. Acesso em: 11 jul. 2024.
LYBAEK, R.; KJAER, T. Municipalities as facilitators, regulators and energy
consumers for enhancing the dissemination of biogas technology in Denmark.
International Journal of Sustainable Energy Planning and Management, v. 8, p.
17-30, 2015. https://doi.org/10.5278/ijsepm.2015.8.3. Acesso em: 11 jul. 2024.
MÖNCH-TEGEDER, M. et al. Enhancement of methane production with horse
manure supplement and pretreatment in a full-scale biogas process. Energy, v. 73, p.
523-530, 2014.
NESHAT, S. A.; MOUSAVI, S. M.; GUVEN, R. G.; NAJAFI, G. Biogas production from
agricultural residues: A review. Renewable and Sustainable Energy Reviews, v. 79,
p. 1171-1180, 2017.
PALATSI, J. et al. Anaerobic digestion of slaughterhouse waste: Main process
limitations and microbial community interactions. Bioresource Technology, v. 102, n.
3, p. 2219-2227, 2011. https://doi.org/10.1016/j.biortech.2010.09.121.
PATIL, V. S.; DESHMUKH, H. V. Anaerobic digestion of vegetable waste for biogas
generation: A review. International Research Journal of Environment Sciences, v. 4,
n. 6, p. 80-83, 2015.
PRUSSI, M. et al. Review of technologies for biomethane production and
assessment of Eu transport share in 2030. Journal of Cleaner Production, v. 222, p.
565-572, 2020. https://doi.org/10.1016/j.jclepro.2019.02.271.
YENIGÜN, O.; DEMIREL, B. Ammonia inhibition in anaerobic digestion: a review.
Process Biochemistry, v. 48, n. 5-6, p. 901-911, 2013. | pt_BR |