dc.relation | AGARAP, A. F. Deep Learning using Rectified Linear Units (ReLU). Arxiv, v. 2, p. 1-7, 2019.
AGATONOVIC-KUSTRIN, S.; BERESFORD, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, v. 22, p. 717-727, 2000.
ALEXOPOULOS, N. D. et al. Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Composites Science and Technology, v.150, p. 194-204, 2017.
ALLEN, J. A.; TUNG, V. C.; KANER, R. B. Honeycomb Carbon: A Review of Graphene. Chemichal Reviews, v. 110, p. 135-145, 2010.
ALSORUJI G.S. et al. On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer. Journal of Materials and Technology, v.23, p. 4075-4088, 2023.
ALVES, V. M. et al. QUIMIOINFORMÁTICA: UMA INTRODUÇÃO. Química Nova, v. 41, n. 2, p. 202-212, 2018.
AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM. Standard Test Method for Tensile Properties of Plastics. ASTM D638-10, New York: ASTM, 2014.
ASADOLLAHI-YAZDI, H. et al. Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. Journal of Composite Materials, v. 51, n.21, p. 3053-3064, 2017.
BILISIK, K.; AKTER, M. Graphene nanocomposites: A review on processes, properties, and applications. Journal of Industrial Textiles, v. 0, n. 0, p. 1-49, 2021.
BOEHM, H.; SETTON, R.; STUMPP, E. Nomenclature and terminology of graphite intercalation compounds. Pure and Applied Chemistry, v.66, n. 9, p. 1893-1901, 1994.
BOTCHKAREV, A. Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology. Arxiv, v. 1, p. 1-37, 2018
CALLISTER, W. D. JR.; RETHWISCH, D. G. Ciência e engenharia de materiais: uma introdução. 9. ed. Rio de Janeiro: LTC, 2016.
CANEVAROLO, V.C. Jr. Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. 2. ed. São Paulo: Artliber, 2006.
CHAI, T.; DRAXLER, R. R. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geoscientific Model Development¸ v. 7, n.3, p. 1247-1250, 2014.
CHAND, R.; TUTEJA, S. K.; NEETHIRAJAN, S. Handbook of graphene. v. 6: Biosensors and advanced sensors; cap. 3: Graphene-based biosensors in agro-defense: food safety and animal health diagnosis. 1. ed. Massachusetts: Wiley, 2019. CHAUHAN, Karansingh et al. Automated machine learning: The new wave of machine learning. In: 2020 2nd international conference on innovative mechanisms for industry applications (ICIMIA). IEEE, 2020. p. 205-212.
FACELI, K. et al. Inteligência artificial: Uma abordagem de aprendizado de máquina. 1.ed. Rio de Janeiro: LTC, 2011.
FU, S. et al. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, v.1, n.1, p. 2-30, 2019.
GARCIA, A.; SPIM, J.A.; SANTOS, C. de A. dos. Ensaios dos Materiais. 2. ed. Rio de Janeiro: LTC, 2012.
GEIM, K; NOVOSELOV, K. S. The rise of graphene. Nature materials, v. 6, p. 183-191, 2007.
GLEMS, R. C. et al. Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs, v. 9, n.3, p. 199-204, 2006.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. 1. ed. Massachusetts: The MIT Press, 2016.
GOYAL V.; BALANDIN, A. A.; Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Applied Physics Letters, v. 100, p. 073113, 2012.
HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automated Machine Learning: Methods, Systems, Challenges. 1. ed. Cham: Springer, 2019.
JAEGER, S.; FULLE, S.; TURK, S. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. Journal of Chemical Information and Modeling, v. 58, n.1, p. 27-35, 2018.
JAMES, G. et al. An Introduction to Statistical Learning with applications in R. 1. ed. New York: Springer, 2013.
KIM, S. et al. PubChem Substance and Compound databases. Nucleic Acids Research¸ v. 44, p. 1202-1213, 2016.
KIM, T. Y.; PARK, C.; MARZARI N. The electronic thermal conductivity of graphene. Nano Letters, v. 16, n.4, p. 2439-2443, 2016.
KUMAR, S. et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, v.80, p. 1-38, 2018.
LEE, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, v. 321, p. 385-388, 2008.
LUDEMIR, T. B. Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. Estudos Avançados, v. 35, n. 101, p. 85-94, 2021.
LUO, H. et al. Exploring Excellent Dispersion of Graphene Nanosheets on Three-dimensional Bacterial Cellulose for Ultra-Strong Nanocomposite Hydrogels. Composites Part A: Applied Science and Manufacturing, v. 109, p. 290-297, 2018.
MA, L.; WANG G.; DAI, J. Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Performance Polymers, v. 29, p. 187-196, 2017.
MALLEY, S. et al. Predictability of mechanical behavior of additively manufactured particulate composites using machine learning and data-driven approaches. Elsevier. Computers in Industry, v.142, n. 103739 p.1-9, 2022.
MITTAL V. Functional Polymer Nanocomposites with Graphene: A Review. Macromolecular Journals. Macromolecular Materials and Engineering, v. 299, p. 906-931, 2014.
MONARD, M. C.; BARANAUSKAS, J. A. Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, v. 1, n. 1, p. 39-56, 2003.
NWANKPA, C. et al. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. Arxiv, v. 1, p. 1-20, 2018.
OMANOVIĆ-MIKLIČANIN, E. et al. Nanocomposites: a brief review. Health and Technology, v. 10, p. 51-59, 2020.
PAPAGEORGIOU, D. G.; KINLOCH L. A.; YOUNG, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Elsevier. Progress in Materials Science, v. 90, p. 75-127, 2017.
PROLONGO, S. G. et al. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. European Polymer Journal, v. 61, p. 206-214, 2014.
PUZYN, T., LESZCZYNSKI, J.; CRONIN, M. T. D. Recent Advances in QSAR Studies: Methods and Applications. 1. ed. Dordrecht: Springer, 2010.
RASCHKA, S.; PATTERSON, J.; NOLET, C. Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information, v. 11, p. 193, 2020.
RASHID, T. Make Your Own Neural Network. [S.l.]: [s.n.], 2016.
RIBEIRO, A. M.; ARAUJO, F. de P. Jr. Um Estudo Comparativo Entre Cinco Métodos de Otimização Aplicados Em Uma RNC Voltada ao Diagnóstico do Glaucoma. Revista de Sistemas e Computação, v.10, n.1, p. 122-130, 2020.
ROGERS, D.; HAHN, M. Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling, v. 50, n.5, p. 742-754, 2010.
ROSS, R. B. Metallic materials specification handbook. v. 1. 4. ed. Glasgow: Springer, 1992.
RUSSEL, S.; NORVIG, P. Inteligência artificial. 3. ed. Rio de Janeiro: Elsevier, 2013.
SANTOS, E. M.; SABOURIN, R.; MAUPIN, P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, v. 10, n. 2, p. 150–162, 2009.
SEGUNDO, J. E. D. V.; VILAR, E. O. Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, v.11, n.1, 2016.
SHAH. R. et al. Progression from Graphene and Graphene Oxide to High Performance Polymer-Based Nanocomposite: A Review. Polymer-Plastics Technology and Engineering, v.54, p. 173-183, 2015.
SHAHIL, K. M. F.; BALANDIN, A. A.; Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Letters, v.12, n. 2, p. 861-867, 2012.
SHS WEB OF CONFERENCES, 144., 2022, Dali. RELU-Function and Derived Function Review. SHS Web of Conferences, 2022, p. 1-5.
SUN, X. Recent Progress in Graphene/Polymer Nanocomposites. Advanced materials, v. 33, n. 6, p. 2001105, 2020.
SUTTON, R.; BARTO, A. G. Reinforcement Learning: An introduction. 2. ed. Massachusetts: The MIT Press, 2018
SWEENEY, J.; WARD, I . M. Mechanical Properties of Solid Polymers. 3. ed. Bradford, UK: Wiley, 2012.
THE NOBEL PRIZE IN PHYSICS 2010. [S.l.], [s.d.]. Disponível em: https://www.nobelprize.org/prizes/physics/2010/summary/. Acesso em: 11 dez. 2023.
WEI, D.; KIVIOJA, J. Graphene for energy solutions and its industrialization. Nanoescale, v. 5, p. 10108-10126, 2013.
WEININGER, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. Journal for Chemical Information and Computer scientists, v. 28, n. 1, 1988.
WINEY, K. I. et al. Polymer Nanocomposites. MRS BULLETIN, v. 32, p. 316-320, 2007.
WOJTYNIAK, J. et al. Data Digitizing: accurate and Precise Data Extraction for Quantitative Systems Pharmacology and Physiologically - Based Pharmacokinetic Modeling. CPT: Pharmacometrics & Systems Pharmacology, v. 9, n. 6, p. 322-331, 2020.
XU, C. et al. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, v. 6, p. 1388-1414, 2013.
YASMIN, A.; DANIEL, I. M. Mechanical and thermal properties of graphite platelet/epoxy Composites. Polymer, v. 45, n. 24, p. 8211-8219, 2004.
ZHANG, L. et al. Thermal, mechanical and electrical properties of polyurethane/ (3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Composites Part A: Applied Science and Manufacturing, v. 90, p. 286-295, 2016. | pt_BR |