Mostrar registro simples

dc.creatorFreitas, Lucas Covello de
dc.date.accessioned2025-10-09T01:38:48Z
dc.date.available2025-10-09T01:38:48Z
dc.date.issued2024-01-10
dc.identifier.citationFREITAS¸ Lucas Covello de. Construção de modelos de aprendizado de máquina para predição de tensão de ruptura de nanocompositos baseados em grafenos e derivados. 2023.70f. Trabalho de Conclusão de Curso. (Curso de Engenharia Mecânica) - Instituto Federal de Ciência e Tecnologia de Pernambuco, Recife. 2024.pt_BR
dc.identifier.urihttps://repositorio.ifpe.edu.br/xmlui/handle/123456789/1904
dc.description.abstractThe development of nanocomposite materials through experimental studies for mechanical properties analysis is a costly activity, requiring considerable time and effort. Concurrently, advanced Machine Learning (ML) techniques have emerged as a promising alternative for efficiently generating information and predictions, also being used for predicting the mechanical properties of polymer nanocomposites based on graphene. Thus, the objective of this work was to develop an ML model for predicting the rupture stress of polymeric nanocomposites using graphene and derivatives as reinforcing materials. In this study, an independent database was created from academic literature, addressing studies on the rupture stress of polymeric nanocomposites using graphene and derivatives as reinforcing materials, and in parallel, chemoinformatics was employed, based on the unsupervised ML technique, Mol2vec, to generate information based on polymer structure. Consequently, a unique database was formed, and Auto-Sklearn was used to predict the rupture stress gain from the addition of graphene to polymeric nanocomposites. Auto-Sklearn, utilizing a pre-trained Mol2vec model with a dimension of 300, identified the Gaussian Process based regression model as the best-performing one, achieving an R² value of 0.769. This application demonstrated that unsupervised ML models efficiently provide information using molecular structures in conjunction with nanocomposites, extracting complementary information for the prediction of mechanical properties through ML models. This implementation emerges as an alternative to reduce the need for empirical data generation in mechanical property analysis, accelerating the evaluation process for nanocomposite compounds.pt_BR
dc.format.extent70f.pt_BR
dc.languagept_BRpt_BR
dc.relationAGARAP, A. F. Deep Learning using Rectified Linear Units (ReLU). Arxiv, v. 2, p. 1-7, 2019. AGATONOVIC-KUSTRIN, S.; BERESFORD, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, v. 22, p. 717-727, 2000. ALEXOPOULOS, N. D. et al. Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Composites Science and Technology, v.150, p. 194-204, 2017. ALLEN, J. A.; TUNG, V. C.; KANER, R. B. Honeycomb Carbon: A Review of Graphene. Chemichal Reviews, v. 110, p. 135-145, 2010. ALSORUJI G.S. et al. On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer. Journal of Materials and Technology, v.23, p. 4075-4088, 2023. ALVES, V. M. et al. QUIMIOINFORMÁTICA: UMA INTRODUÇÃO. Química Nova, v. 41, n. 2, p. 202-212, 2018. AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM. Standard Test Method for Tensile Properties of Plastics. ASTM D638-10, New York: ASTM, 2014. ASADOLLAHI-YAZDI, H. et al. Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. Journal of Composite Materials, v. 51, n.21, p. 3053-3064, 2017. BILISIK, K.; AKTER, M. Graphene nanocomposites: A review on processes, properties, and applications. Journal of Industrial Textiles, v. 0, n. 0, p. 1-49, 2021. BOEHM, H.; SETTON, R.; STUMPP, E. Nomenclature and terminology of graphite intercalation compounds. Pure and Applied Chemistry, v.66, n. 9, p. 1893-1901, 1994. BOTCHKAREV, A. Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties and Typology. Arxiv, v. 1, p. 1-37, 2018 CALLISTER, W. D. JR.; RETHWISCH, D. G. Ciência e engenharia de materiais: uma introdução. 9. ed. Rio de Janeiro: LTC, 2016. CANEVAROLO, V.C. Jr. Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. 2. ed. São Paulo: Artliber, 2006. CHAI, T.; DRAXLER, R. R. Root mean square error (RMSE) or mean absolute error (MAE)? –Arguments against avoiding RMSE in the literature. Geoscientific Model Development¸ v. 7, n.3, p. 1247-1250, 2014. CHAND, R.; TUTEJA, S. K.; NEETHIRAJAN, S. Handbook of graphene. v. 6: Biosensors and advanced sensors; cap. 3: Graphene-based biosensors in agro-defense: food safety and animal health diagnosis. 1. ed. Massachusetts: Wiley, 2019. CHAUHAN, Karansingh et al. Automated machine learning: The new wave of machine learning. In: 2020 2nd international conference on innovative mechanisms for industry applications (ICIMIA). IEEE, 2020. p. 205-212. FACELI, K. et al. Inteligência artificial: Uma abordagem de aprendizado de máquina. 1.ed. Rio de Janeiro: LTC, 2011. FU, S. et al. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, v.1, n.1, p. 2-30, 2019. GARCIA, A.; SPIM, J.A.; SANTOS, C. de A. dos. Ensaios dos Materiais. 2. ed. Rio de Janeiro: LTC, 2012. GEIM, K; NOVOSELOV, K. S. The rise of graphene. Nature materials, v. 6, p. 183-191, 2007. GLEMS, R. C. et al. Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs, v. 9, n.3, p. 199-204, 2006. GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. 1. ed. Massachusetts: The MIT Press, 2016. GOYAL V.; BALANDIN, A. A.; Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Applied Physics Letters, v. 100, p. 073113, 2012. HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automated Machine Learning: Methods, Systems, Challenges. 1. ed. Cham: Springer, 2019. JAEGER, S.; FULLE, S.; TURK, S. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. Journal of Chemical Information and Modeling, v. 58, n.1, p. 27-35, 2018. JAMES, G. et al. An Introduction to Statistical Learning with applications in R. 1. ed. New York: Springer, 2013. KIM, S. et al. PubChem Substance and Compound databases. Nucleic Acids Research¸ v. 44, p. 1202-1213, 2016. KIM, T. Y.; PARK, C.; MARZARI N. The electronic thermal conductivity of graphene. Nano Letters, v. 16, n.4, p. 2439-2443, 2016. KUMAR, S. et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, v.80, p. 1-38, 2018. LEE, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, v. 321, p. 385-388, 2008. LUDEMIR, T. B. Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. Estudos Avançados, v. 35, n. 101, p. 85-94, 2021. LUO, H. et al. Exploring Excellent Dispersion of Graphene Nanosheets on Three-dimensional Bacterial Cellulose for Ultra-Strong Nanocomposite Hydrogels. Composites Part A: Applied Science and Manufacturing, v. 109, p. 290-297, 2018. MA, L.; WANG G.; DAI, J. Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Performance Polymers, v. 29, p. 187-196, 2017. MALLEY, S. et al. Predictability of mechanical behavior of additively manufactured particulate composites using machine learning and data-driven approaches. Elsevier. Computers in Industry, v.142, n. 103739 p.1-9, 2022. MITTAL V. Functional Polymer Nanocomposites with Graphene: A Review. Macromolecular Journals. Macromolecular Materials and Engineering, v. 299, p. 906-931, 2014. MONARD, M. C.; BARANAUSKAS, J. A. Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, v. 1, n. 1, p. 39-56, 2003. NWANKPA, C. et al. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. Arxiv, v. 1, p. 1-20, 2018. OMANOVIĆ-MIKLIČANIN, E. et al. Nanocomposites: a brief review. Health and Technology, v. 10, p. 51-59, 2020. PAPAGEORGIOU, D. G.; KINLOCH L. A.; YOUNG, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Elsevier. Progress in Materials Science, v. 90, p. 75-127, 2017. PROLONGO, S. G. et al. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. European Polymer Journal, v. 61, p. 206-214, 2014. PUZYN, T., LESZCZYNSKI, J.; CRONIN, M. T. D. Recent Advances in QSAR Studies: Methods and Applications. 1. ed. Dordrecht: Springer, 2010. RASCHKA, S.; PATTERSON, J.; NOLET, C. Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information, v. 11, p. 193, 2020. RASHID, T. Make Your Own Neural Network. [S.l.]: [s.n.], 2016. RIBEIRO, A. M.; ARAUJO, F. de P. Jr. Um Estudo Comparativo Entre Cinco Métodos de Otimização Aplicados Em Uma RNC Voltada ao Diagnóstico do Glaucoma. Revista de Sistemas e Computação, v.10, n.1, p. 122-130, 2020. ROGERS, D.; HAHN, M. Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling, v. 50, n.5, p. 742-754, 2010. ROSS, R. B. Metallic materials specification handbook. v. 1. 4. ed. Glasgow: Springer, 1992. RUSSEL, S.; NORVIG, P. Inteligência artificial. 3. ed. Rio de Janeiro: Elsevier, 2013. SANTOS, E. M.; SABOURIN, R.; MAUPIN, P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, v. 10, n. 2, p. 150–162, 2009. SEGUNDO, J. E. D. V.; VILAR, E. O. Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, v.11, n.1, 2016. SHAH. R. et al. Progression from Graphene and Graphene Oxide to High Performance Polymer-Based Nanocomposite: A Review. Polymer-Plastics Technology and Engineering, v.54, p. 173-183, 2015. SHAHIL, K. M. F.; BALANDIN, A. A.; Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Letters, v.12, n. 2, p. 861-867, 2012. SHS WEB OF CONFERENCES, 144., 2022, Dali. RELU-Function and Derived Function Review. SHS Web of Conferences, 2022, p. 1-5. SUN, X. Recent Progress in Graphene/Polymer Nanocomposites. Advanced materials, v. 33, n. 6, p. 2001105, 2020. SUTTON, R.; BARTO, A. G. Reinforcement Learning: An introduction. 2. ed. Massachusetts: The MIT Press, 2018 SWEENEY, J.; WARD, I . M. Mechanical Properties of Solid Polymers. 3. ed. Bradford, UK: Wiley, 2012. THE NOBEL PRIZE IN PHYSICS 2010. [S.l.], [s.d.]. Disponível em: https://www.nobelprize.org/prizes/physics/2010/summary/. Acesso em: 11 dez. 2023. WEI, D.; KIVIOJA, J. Graphene for energy solutions and its industrialization. Nanoescale, v. 5, p. 10108-10126, 2013. WEININGER, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. Journal for Chemical Information and Computer scientists, v. 28, n. 1, 1988. WINEY, K. I. et al. Polymer Nanocomposites. MRS BULLETIN, v. 32, p. 316-320, 2007. WOJTYNIAK, J. et al. Data Digitizing: accurate and Precise Data Extraction for Quantitative Systems Pharmacology and Physiologically - Based Pharmacokinetic Modeling. CPT: Pharmacometrics & Systems Pharmacology, v. 9, n. 6, p. 322-331, 2020. XU, C. et al. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, v. 6, p. 1388-1414, 2013. YASMIN, A.; DANIEL, I. M. Mechanical and thermal properties of graphite platelet/epoxy Composites. Polymer, v. 45, n. 24, p. 8211-8219, 2004. ZHANG, L. et al. Thermal, mechanical and electrical properties of polyurethane/ (3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Composites Part A: Applied Science and Manufacturing, v. 90, p. 286-295, 2016.pt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAn error occurred on the license name.*
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectEngenharia mecânicapt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectNanocompositospt_BR
dc.subjectGrafenospt_BR
dc.titleConstrução de modelos de aprendizado de máquina para predição de tensão de ruptura de nanocompositos baseados em grafenos e derivadospt_BR
dc.typeTCCpt_BR
dc.creator.Latteshttps://lattes.cnpq.br/6113170993475576pt_BR
dc.contributor.advisor1Menezes, Frederico Duarte
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/ 4005471052834081pt_BR
dc.contributor.referee1Menezes, Frederico Duarte de
dc.contributor.referee2Costa, José Angêlo Peixoto da
dc.contributor.referee3Almeida, Leandro Maciel
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4005471052834081pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8239712503695923pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8513145553846486pt_BR
dc.publisher.departmentRecifept_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqENGENHARIAS::ENGENHARIA MECANICA::PROJETOS DE MAQUINASpt_BR
dc.description.resumoO desenvolvimento de materiais nanocompósitos através de estudos experimentais para análise de propriedades mecânicas é uma atividade dispendiosa, que requer tempo e esforço considerável. Em paralelo, técnicas avançadas de Aprendizado de Máquina (AM) surgiram como uma alternativa promissora para gerar informações e previsões de forma eficiente, sendo utilizado também para predição de propriedades mecânicas de nanocompósitos poliméricos à base de grafeno. Assim, o objetivo deste trabalho foi desenvolver um modelo de AM para predição da tensão de ruptura de nanocompósitos poliméricos utilizando grafeno e derivados como material de reforço. Neste trabalho foi criado de forma independente uma base de dados da literatura acadêmica, onde abordou estudos da tensão de ruptura de nanocompósitos poliméricos utilizando grafeno e derivados como material de reforço, e em paralelo, fez uso da quimioinformática, baseando-se na técnica de AM não supervisionado, Mol2vec, para gerar informações baseadas na estrutura de polímeros. Com isso, formou uma base de dados única e utilizou-se o Auto-Sklearn para prever o ganho de tensão de ruptura a partir da adição de grafeno em nanocompósitos poliméricos. O Auto-sklearn, utilizando-se um modelo pré-treinado de Mol2vec com dimensão 300 obteve-se como o melhor modelo de regressão obtido o baseado em Processos Gaussianos (Gaussian Process), que apresentou um valor de R² de 0.769. Esta aplicação demonstrou que o modelo de AM não supervisionado fornece informações de forma eficiente utilizando estruturas moleculares em composição com nanocompósitos, extraindo informações complementares para o processo de predição de propriedades mecânicas através de modelos de AM. Esta implementação surge como uma alternativa para reduzir a necessidade de geração de dados empíricos em problemas de análise de propriedades mecânicas, acelerando o processo de avaliação de compostos nanocompósitos.pt_BR


Arquivos deste item

Thumbnail
Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples