Mostrar registro simples

dc.creatorSilva, Paulo André Oliveira da
dc.date.accessioned2025-04-10T23:28:24Z
dc.date.available2025-04-10T23:28:24Z
dc.date.issued2025-02-17
dc.identifier.citationSILVA, Paulo André Oliveira da; FONTES, Ana Clara Silva. Utilizando Shapley Additive Explanations para analisar características epidemiológicas da Covid-19. Orientador: Flávio Rosendo da Silva Oliveira. 2025. Artigo (Tecnólogo em Análise e Desenvolvimento de Sistemas) - Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco - Campus Paulista, Paulista, PE, 2025. 24 p.pt_BR
dc.identifier.urihttps://repositorio.ifpe.edu.br/xmlui/handle/123456789/1607
dc.description.abstractThe COVID-19 pandemic resulted in millions of deaths globally, making the understanding of epidemiological characteristics a priority. In this context, institutions like Fiocruz provided essential data for analysis, and the use of Machine Learning and Explainable Artificial Intelligence techniques emerged as a strategy to interpret patterns in these data. This article, through a quantitative exploratory approach, presents a comparative analysis of the epidemiological characteristics of COVID-19, from 2020 to 2021. For this analysis, an eXplainable Artificial Intelligence technique, SHAP, was applied to Machine Learning models. Finally, it was possible to conduct the proposed analysis and identify both similarities and dissimilarities between the studied periods.pt_BR
dc.format.extent24 p.pt_BR
dc.languagept_BRpt_BR
dc.relationAKIBA, Takuya; SANO, Shotaro; YANASE, Toshihiko; OHTA, Takeru; KOYAMA, Masanori. Optuna: A Next-generation Hyperparameter Optimization Framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, [S.l.], p. 2623-2631, 2019. ALBAHRI, Ahmed. et al. A systematic review of trustworthy and explainable artificial intelligence in healthcare: assessment of quality, bias risk, and data fusion. Information Fusion, [S.l.], v. 96, p. 156-191, 2023. DOI: 10.1016/j.inffus.2023.03.008. ALI, Sajid. et al. Explainable artificial intelligence (XAI): what we know and what is left to attain trustworthy artificial intelligence. Information Fusion, [S.l.], v. 99, p. 101805, 2023. DOI: 10.1016/j.inffus.2023.101805. AN, Qi et al. A comprehensive review on machine learning in healthcare industry: classification, restrictions, opportunities and challenges. Sensors, [S.l.], v. 23, n. 9, p. 4178, 2023. DOI: 10.3390/s23094178. CASCELLA, Marco et al. Features, evaluation, and treatment of coronavirus (COVID-19). STATPEARLS, Treasure Island, Flórida, EUA, 2023. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK554776/. Acesso em: 20 de julho de 2024. CERVANTES, Jair. et al. A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing, [S.l.], v. 408, p. 189-215, 2020. DOI: 10.1016/j.neucom.2019.10.118. CHEN, Tianqi; GUESTRIN, Carlos. XGBoost: a scalable tree boosting system. In: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING. São Francisco, California, EUA, 2016. p. 785-794. Nova Iorque, NI: Association for Computing Machinery. DOI: 10.1145/2939672.2939785. DEBJIT, Kumar et al. An improved machine-learning approach for COVID-19 prediction using Harris Hawks optimization and feature analysis using SHAP. Diagnostics, [S.l.], v. 12, n. 5, p. 1023, 2022. DOI: 10.3390/diagnostics12051023. EMAMI, Amir et al. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Archives of Academic Emergency Medicine, [S.l.], v. 8, n. 1, p. e35, 2020. FACELI, Katti et al. Inteligência Artificial: uma abordagem de aprendizado de máquina. 2. ed. Rio de Janeiro: LTC, 2021. p. 1, 3, 26, 28, 29, 35, 36, 43, 62 FONSECA, Vinicius L. N. et al. Classification of Tropical Disease-carrying Mosquitoes Using Deep Learning and SHAP. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 23. , 2023, São Paulo/SP. Anais Do XXIII Simpósio Brasileiro De Computação Aplicada À Saúde. Porto Alegre: Sociedade Brasileira de Computação, 2023. p. 25-34. DOI: 10.5753/sbcas.2023.229406. FREITAS, Carlos M.; BARCELLOS, Christovam; VILLELA, Daniel A. M. Observatório Covid-19 Fiocruz: uma análise da evolução da pandemia de fevereiro de 2020 a abril de 2022. Ciência & Saúde Coletiva, [S.l.], v. 28, n. 10, p. 2845-2855, 2023. DOI: 10.1590/1413-812320232810.10412023. GUAN, Wei-jie et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, [S.l.], v. 382, n. 18, p. 1708-1720, 2020. DOI: 10.1056/NEJMoa2002032. HULSEN, Tim et al. From big data to better patient outcomes. Clinical Chemistry and Laboratory Medicine (CCLM), [S.l.], v. 61, n. 4, p. 580-586, 2022. DOI: 10.1515/cclm-2022-1096. HULSEN, Tim. Explainable artificial intelligence (XAI): concepts and challenges in healthcare. AI, [S.l.], v. 4, n. 3, p. 652-666, 2023. DOI: 10.3390/ai4030034. IGUAL, Laura; SEGUÍ, Santi. Regression Analysis. In: Introduction to Data Science. Undergraduate Topics in Computer Science. Cham: Springer, 2017. p. 07. DOI: 10.1007/978-3-319-50017-1_6. JIA, Zhenge et al. The importance of resource awareness in artificial intelligence for healthcare. Nature Machine Intelligence, [S.l.], v. 5, p. 687-698, 2023. DOI: 10.1038/s42256-023-00670-0. JIJO, Bahzad T.; ABDULAZEEZ, Adnan. M. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, [S.l.], v. 2, n. 1, p. 20-28, 2021. DOI: 10.38094/jastt20165. KLOKNER, Sarah G. M. et al. Epidemiological profile and risk factors predictors of COVID-19 in southern Brazil. Research, Society and Development, [S.l.], v. 10, n. 3, p. e17710313197, 2021. DOI: 10.33448/rsd-v10i3.13197. KUMAR, Yogesh K. et al. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Human Comput 14, [S.l.], 8459–8486, 2023. DOI: 10.1007/s12652-021-03612-z KUSHWAH, Jitendra S. et al. Comparative study of regressor and classifier with decision tree using modern tools. Materials Today: Proceedings, [S.l.], v. 56, p. 3571-3576, 2022. Nota: First International Conference on Design and Materials. DOI: 10.1016/j.matpr.2021.11.635. LEE, Eun Hak. Exploring transit use during COVID-19 based on XGB and SHAP using smart card data. Journal of Advanced Transportation, [S.l.], v. 2022, n. 1, p. 6458371, 2022. DOI: 10.1155/2022/6458371. LIU, Lianhua et al. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and Shapley additive explanation. Frontiers in Endocrinology, [S.l.], v. 15, 2024. DOI: 10.3389/fendo.2024.1320335. LUNDBERG, Scott M.; LEE, Su-In. A unified approach to interpreting model predictions. In: PROCEEDINGS OF THE 31ST INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS (NIPS 2017). Long Beach, Califórnia, EUA, 2017. p. 4768-4777. Red Hook, NI: Curran Associates Inc. MARINHO, Pedro R. D. et al. Covid-19 in Brazil: a sad scenario. Cytokine & Growth Factor Reviews, [S.l.], v. 58, p. 51-54, 2021. DOI: 10.1016/j.cytogfr.2020.10.010 PAULI, Suellen T. Z. de; KLEINA, M.; BONAT, W. H. MULTILAYER PERCEPTRON ARTIFICIAL NEURAL NETWORKS: AN APPROACH FOR LEARNING THROUGH THE BAYESIAN FRAMEWORK. Brazilian Journal of Biometrics, [S.l.], v. 39, n. 1, p. 45–59, 2021. DOI: 10.28951/rbb.v39i1.495. RAINIO, Oona; TEUHO, Jarmo; KLÉN, Riku. Evaluation metrics and statistical tests for machine learning. Scientific Reports, [S.l.], v. 14, p. 6086, 2024. DOI: 10.1038/s41598-024-56706-x. RODRIGUES, Gustavo; KREUTZ, Diego. Modelo preditivo para classificação de risco de óbito de pacientes com COVID-19 utilizando dados abertos. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 22. , 2022, Teresina. Anais Do XXII Simpósio Brasileiro De Computação Aplicada À Saúde. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 144-155. ISSN 2763-8952. DOI: 10.5753/sbcas.2022.222494. ROMANO, Donato et al. Insights from explainable artificial intelligence of pollution and socioeconomic influences for respiratory cancer mortality in Italy. Journal of Personalized Medicine, [S.l.], v. 14, n. 4, p. 430, 2024. DOI: 10.3390/jpm14040430. ROUQUAYROL, Maria Zélia; GURGEL, Marcelo. Rouquayrol: epidemiologia e saúde. 8. ed. Rio de Janeiro: MedBook, 2018. 719 p. 70 - 73. SARKER, Iqbal H. Machine learning: algorithms, real-world applications and research directions. SN Computer Science, [S.l.], v. 2, p. 160, 2021. DOI: 10.1007/s42979-021-00592-x SCHONLAU, Matthias; ZOU, Rosie Y. The random forest algorithm for statistical learning. The Stata Journal, [S.l.], v. 20, n. 1, p. 3-29, 2020. DOI: 10.1177/1536867X20909688. SHARMA, Anshika et al. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, Basel, v. 13, n. 2, p. 202, 2021. DOI: 10.3390/v13020202. SIDEY-GIBBONS, Jenni A. M. et al. Machine learning in medicine: a practical introduction. BMC Medical Research Methodology, [S.l.], v. 19, p. 64, 2019. DOI: 10.1186/s12874-019-0681-4. UDDIN, Shahadat et al. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Scientific Reports, [S.l.], v. 12, p. 6256, 2022. DOI: 10.1038/s41598-022-10358-x. ULRICHSEN, Felipe C.; SENA, Alexandre C.; PÔRTO, Luís C. M. S.; FIGUEIREDO, Karla. Avaliação do Uso de IA para Auxiliar no Diagnóstico de Casos de COVID-19 para Diferentes Surtos. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 22. , 2022, Teresina. Anais Do XXII Simpósio Brasileiro De Computação Aplicada À Saúde. Porto Alegre: Sociedade Brasileira de Computação, 2022. p. 108-119. DOI: 10.5753/sbcas.2022.222467. VANACORE, Amalia; PELLEGRINO, Maria S.; CIARDELLI, Armando C. Fair evaluation of classifier predictive performance based on binary confusion matrix. Computational Statistics, [S.l.], v. 39, p. 363-383, 2024. DOI: 10.1007/s00180-022-01301-9. WHITE, Ryen W.; MARCHIONINI, Gary; MURESAN, Gheorghe. Evaluating exploratory search systems. Information Processing and Management 44, 2 (2008), 433. WOODMAN, Richard J. et al. A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future. Aging Clinical and Experimental Research, [S.l.], v. 35, p. 2363-2397, 2023. DOI: 10.1007/s40520-023-02552-2. WORLD HEALTH ORGANIZATION. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. [S.l.], 2020. Disponível em: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-th e-media-briefing-on-covid-19---11-march-2020. Acesso em 20 de julho de 2024. ZHOU, Zhi-Hua. Machine learning. Tradução de Shaowu Liu. 1. ed. Singapura: Springer Singapore. p. 2, 4, 63, 2021. DOI: 10.1007/978-981-15-1967-3.pt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectEpidemiologiapt_BR
dc.subjectCOVID-19pt_BR
dc.subjectAprendizagem de máquinapt_BR
dc.subjectInteligência Artificial Explicávelpt_BR
dc.titleUtilizando Shapley Additive Explanations para analisar características epidemiológicas da Covid-19.pt_BR
dc.title.alternativeUsing Shapley Additive Explanations to analyze epidemiological Covid-19 features.pt_BR
dc.typeArticlept_BR
dc.creator.Latteshttps://lattes.cnpq.br/0039644056595343pt_BR
dc.contributor.advisor1Oliveira, Flávio Rosendo da Silva
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6828380394080049pt_BR
dc.contributor.referee1Quinino, Louisiana Regadas de Macedo
dc.contributor.referee2Queiroz, Anderson Apolonio Lira
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0426291726019313pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0652960425058437pt_BR
dc.publisher.departmentPaulistapt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOpt_BR
dc.description.resumoA pandemia de COVID-19 resultou em milhões de mortes globalmente, tornando a compreensão das características epidemiológicas uma prioridade. Nesse cenário, instituições como a Fiocruz forneceram dados fundamentais para análise, e o uso de técnicas de Aprendizagem de Máquina e Inteligência Artificial Explicável surgiram como uma estratégia para interpretar padrões nesses dados. O presente artigo, por meio de uma abordagem exploratória quantitativa, apresenta uma análise comparativa das características epidemiológicas da COVID-19, no período de 2020 a 2021. Para tal análise, foi aplicada uma técnica de Inteligência Artificial Explicável, SHAP, a modelos de Aprendizagem de Máquina. Por fim, foi possível realizar a análise proposta e identificar tanto as similaridades quanto as dissimilaridades entre os períodos estudados.pt_BR
dc.creator.name2Fontes, Ana Clara Silva
dc.creator.Lattes2http://lattes.cnpq.br/6438387455079982pt_BR


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples