dc.relation | AKIBA, T. et al. Optuna: A next-generation hyperparameter optimization framework. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. [S.l.: s.n.], 2019. 14
ALLAM, A. M. N.; HAGGAG, M. H. The question answering systems: A survey. International
Journal of Research and Reviews in Information Sciences (IJRRIS), v. 2, n. 3, 2012. 4
ATHOTA, L. et al. Chatbot for healthcare system using artificial intelligence. In: 2020 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO). [S.l.: s.n.], 2020. p. 619–622. 2
Calijorne Soares, M. A.; PARREIRAS, F. S. A literature review on question answering
techniques, paradigms and systems. Journal of King Saud University - Computer and
Information Sciences, v. 32, n. 6, p. 635–646, 2020. ISSN 1319-1578. Dispon´ıvel em:
https://www.sciencedirect.com/science/article/pii/S131915781830082X. Acesso em: 05 set. 2024. 4
CHEN, J. et al. An Empirical Survey of Data Augmentation for Limited Data Learning in NLP.
Transactions of the Association for Computational Linguistics, v. 11, p. 191–211, 03 2023. ISSN
2307-387X. Dispon´ıvel em: https://doi.org/10.1162/tacl\ a\ 00542. Acesso em: 05 set. 2024. 3
CHEN, Y.; ZULKERNINE, F. Bird-qa: A bert-based information retrieval approach to domain
specific question answering. In: . [S.l.: s.n.], 2021. p. 3503–3510. 6, 7
CHOWDHARY, K. R. Natural language processing. In: . Fundamentals of Artificial
Intelligence. New Delhi: Springer India, 2020. p. 603–649. ISBN 978-81-322-3972-7. Disponível
em: https://doi.org/10.1007/978-81-322-3972-7 19. Acesso em: 05 set. 2024. 2
CLARIZIA, F. et al. Chatbot: An education support system for student. In: CASTIGLIONE, A. et al.
(Ed.). Cyberspace Safety and Security. Cham: Springer International Publishing, 2018. p. 291–302.
COLLARANA, D. et al. A question answering system on regulatory documents. In: International
Conference on Legal Knowledge and Information Systems. [s.n.], 2018. Dispon´ıvel em:
https://api.semanticscholar.org/CorpusID:55702047. Acesso em: 05 set. 2024. 5
CSAKY, R. Deep learning based chatbot models. ArXiv, abs/1908.08835, 2019. 2
DEVLIN, J. et al. Bert: Pre-training of deep bidirectional transformers for language understanding.
In: North American Chapter of the Association for Computational Linguistics. [s.n.], 2019.
Dispon´ıvel em: https://api.semanticscholar.org/CorpusID:52967399. Acesso em: 05 set. 2024. 3, 12,
16
EDUCAc¸aO, C. e. T. d. P. Instituto Federal de. ˜ ORGANIZAC¸ AO ACAD ˜ EMICA INSTITUCIONAL ˆ .
[S.l.], 2015. 2
HOWARD, J.; RUDER, S. Universal language model fine-tuning for text classification. In:
GUREVYCH, I.; MIYAO, Y. (Ed.). Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for
Computational Linguistics, 2018. p. 328–339. Dispon´ıvel em: https://aclanthology.org/P18-1031.
Acesso em: 05 set. 2024. 3
KHURANA, D. et al. Natural language processing: state of the art, current trends and challenges.
Multimedia Tools and Applications, v. 82, n. 3, p. 3713–3744, Jan 2023. ISSN 1573-7721. Dispon´ıvel
em: https://doi.org/10.1007/s11042-022-13428-4. Acesso em: 05 set. 2024. 3
LATHKAR, M. High-Performance Web Apps with FastAPI: The Asynchronous Web Framework
Based on Modern Python. [S.l.]: Springer, 2023. 9
Instituto Federal de Educac¸ao, Ci ˜ encias e Tecnologia de Pernambuco. ˆ Campus Paulista. Curso de
Analise e Desenvolvimento de Sistemas. 05 de setembro de 2024. ´
22
LI, B.; RUDZICZ, F. TorontoCL at CMCL 2021 shared task: RoBERTa with multi-stage fine-tuning
for eye-tracking prediction. In: CHERSONI, E. et al. (Ed.). Proceedings of the Workshop on
Cognitive Modeling and Computational Linguistics. Online: Association for Computational
Linguistics, 2021. p. 85–89. Dispon´ıvel em: https://aclanthology.org/2021.cmcl-1.9. Acesso em: 05
set. 2024. 15
LIASHCHYNSKYI, P.; LIASHCHYNSKYI, P. Grid search, random search, genetic algorithm: a
big comparison for nas. arXiv preprint arXiv:1912.06059, 2019. 14
MELLO, G. L. de et al. PeLLE: Encoder-based language models for Brazilian Portuguese based on
open data. 2024. Dispon´ıvel em: https://arxiv.org/abs/2402.19204. Acesso em: 05 set. 2024. 3
NETO, J. R. et al. Chatbot to support frequently asked questions from students in higher
education institutions. In: Anais do XIX Encontro Nacional de Inteligencia Artificial e ˆ
Computacional. Porto Alegre, RS, Brasil: SBC, 2022. p. 591–601. ISSN 2763-9061. Dispon´ıvel em:
https://sol.sbc.org.br/index.php/eniac/article/view/22815. Acesso em: 05 set. 2024. 5
PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, v. 12, p. 2825–2830, 2011. 15
PRECHELT, L. Early stopping-but when? In: Neural Networks: Tricks of the trade. [S.l.]: Springer,
2002. p. 55–69. 14
RAJPURKAR, P. et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. 2016. 5
SAYAMA, H. F.; ARAUJO, A. V.; FERNANDES, E. R. Faquad: Reading comprehension dataset in
the domain of brazilian higher education. In: 2019 8th Brazilian Conference on Intelligent Systems
(BRACIS). [S.l.: s.n.], 2019. p. 443–448. 7, 17, 18
SHARMA, V.; TIWARI, A. K. A study on user interface and user experience designs and its tools.
World Journal of Research and Review (WJRR), v. 12, n. 6, p. 41–45, 2021. 8
SILVA, E. H. M. D.; LATERZA, J.; FALEIROS, T. de P. New state-of-the-art for question answering
on portuguese squad v1.1. Anais do X Symposium on Knowledge Discovery, Mining and Learning
(KDMiLe 2022), 2022. Dispon´ıvel em: https://api.semanticscholar.org/CorpusID:259755828. Acesso
em: 05 set. 2024. 3
SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. Bertimbau: Pretrained bert models for brazilian
portuguese. In: CERRI, R.; PRATI, R. C. (Ed.). Intelligent Systems. Cham: Springer International
Publishing, 2020. p. 403–417. ISBN 978-3-030-61377-8. 3
VASWANI, A. et al. Attention is all you need. In: GUYON, I. et al. (Ed.). Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2017. v. 30. Dispon´ıvel em: https://
proceedings.neurips.cc/paper files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
Acesso em: 05 set. 2024. 3, 4
WAGNER, J. et al. The brwac corpus: A new open resource for brazilian portuguese. In: . [S.l.: s.n.],
2018. 3
WANG, H. et al. Pre-trained language models and their applications. Engineering, v. 25, p.
51–65, 2023. ISSN 2095-8099. Dispon´ıvel em: https://www.sciencedirect.com/science/article/pii/
S2095809922006324. Acesso em: 05 set. 2024. 3
WOLF, T. et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. 2020.
9
Instituto Federal de Educac¸ao, Ci ˜ encias e Tecnologia de Pernambuco. ˆ Campus Paulista. Curso de
Analise e Desenvolvimento de Sistemas. 05 de setembro de 2024. ´
23
WU, Y. et al. Google’s neural machine translation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144, 2016. Dispon´ıvel em: https://api.semanticscholar.org/
CorpusID:3603249. Acesso em: 05 set. 2024. 13
WUBE, H. D. et al. Text-based chatbot in financial sector: a systematic literature review. Data Sci.
Financ. Econ, v. 2, n. 3, p. 232–259, 2022. 2
ZENG, C. et al. A survey on machine reading comprehension—tasks, evaluation metrics and
benchmark datasets. Applied Sciences, v. 10, n. 21, 2020. ISSN 2076-3417. Dispon´ıvel em:
https://www.mdpi.com/2076-3417/10/21/7640. Acesso em: 05 set. 2024. 4 | pt_BR |