Mostrar registro simples

dc.creatorSouza, Alex Emanuel Barbosa de
dc.date.accessioned2024-10-30T13:32:14Z
dc.date.available2024-10-30T13:32:14Z
dc.date.issued2024-09-05
dc.identifier.citationSOUZA, Alex Emanuel Barbosa de. Proposta de chatbot inteligente baseado na organização acadêmica do Instituto Federal de Pernambuco. Orientador: Flávio Rosendo da Silva Oliveira. 2024. Artigo (Tecnólogo em Análise e Desenvolvimento de Sistemas) - Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco - Campus Paulista, Paulista, PE, 2024. 24 p.pt_BR
dc.identifier.urihttps://repositorio.ifpe.edu.br/xmlui/handle/123456789/1415
dc.description.abstractThe Federal Institute of Pernambuco houses a variety of guiding documents. However, accessing the information contained within these documents is often neither simple nor quick due to their length and complexity. To address this challenge, this paper proposes the development of an intelligent chatbot designed to facilitate access to institutional information contained within the Academic Organization document of the Federal Institute of Pernambuco. The chatbot uses HTML, CSS, and ReactJS for the client interface, FastAPI for the server application, MySQL as the database, and the BERTimbau model for system intelligence. Additionally, the OrgAcadQA dataset was created, based on the Academic Organization document of the Institute, and used in conjunction with the SQuAD v1.1-PT-BR dataset for training and evaluating models in the Question Answering task. The BERTimbauLarge model achieved the most promising results, reaching an Exact Match of 0.78 and an F1 score of 0.88 on the OrgAcadQA dataset. These results highlight the effectiveness of BERTimbau models in building Question Answering systems within the context of the Academic Organization at the Federal Institute of Pernambuco.pt_BR
dc.format.extent24 p.pt_BR
dc.languagept_BRpt_BR
dc.relationAKIBA, T. et al. Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.: s.n.], 2019. 14 ALLAM, A. M. N.; HAGGAG, M. H. The question answering systems: A survey. International Journal of Research and Reviews in Information Sciences (IJRRIS), v. 2, n. 3, 2012. 4 ATHOTA, L. et al. Chatbot for healthcare system using artificial intelligence. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). [S.l.: s.n.], 2020. p. 619–622. 2 Calijorne Soares, M. A.; PARREIRAS, F. S. A literature review on question answering techniques, paradigms and systems. Journal of King Saud University - Computer and Information Sciences, v. 32, n. 6, p. 635–646, 2020. ISSN 1319-1578. Dispon´ıvel em: https://www.sciencedirect.com/science/article/pii/S131915781830082X. Acesso em: 05 set. 2024. 4 CHEN, J. et al. An Empirical Survey of Data Augmentation for Limited Data Learning in NLP. Transactions of the Association for Computational Linguistics, v. 11, p. 191–211, 03 2023. ISSN 2307-387X. Dispon´ıvel em: https://doi.org/10.1162/tacl\ a\ 00542. Acesso em: 05 set. 2024. 3 CHEN, Y.; ZULKERNINE, F. Bird-qa: A bert-based information retrieval approach to domain specific question answering. In: . [S.l.: s.n.], 2021. p. 3503–3510. 6, 7 CHOWDHARY, K. R. Natural language processing. In: . Fundamentals of Artificial Intelligence. New Delhi: Springer India, 2020. p. 603–649. ISBN 978-81-322-3972-7. Disponível em: https://doi.org/10.1007/978-81-322-3972-7 19. Acesso em: 05 set. 2024. 2 CLARIZIA, F. et al. Chatbot: An education support system for student. In: CASTIGLIONE, A. et al. (Ed.). Cyberspace Safety and Security. Cham: Springer International Publishing, 2018. p. 291–302. COLLARANA, D. et al. A question answering system on regulatory documents. In: International Conference on Legal Knowledge and Information Systems. [s.n.], 2018. Dispon´ıvel em: https://api.semanticscholar.org/CorpusID:55702047. Acesso em: 05 set. 2024. 5 CSAKY, R. Deep learning based chatbot models. ArXiv, abs/1908.08835, 2019. 2 DEVLIN, J. et al. Bert: Pre-training of deep bidirectional transformers for language understanding. In: North American Chapter of the Association for Computational Linguistics. [s.n.], 2019. Dispon´ıvel em: https://api.semanticscholar.org/CorpusID:52967399. Acesso em: 05 set. 2024. 3, 12, 16 EDUCAc¸aO, C. e. T. d. P. Instituto Federal de. ˜ ORGANIZAC¸ AO ACAD ˜ EMICA INSTITUCIONAL ˆ . [S.l.], 2015. 2 HOWARD, J.; RUDER, S. Universal language model fine-tuning for text classification. In: GUREVYCH, I.; MIYAO, Y. (Ed.). Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, 2018. p. 328–339. Dispon´ıvel em: https://aclanthology.org/P18-1031. Acesso em: 05 set. 2024. 3 KHURANA, D. et al. Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, v. 82, n. 3, p. 3713–3744, Jan 2023. ISSN 1573-7721. Dispon´ıvel em: https://doi.org/10.1007/s11042-022-13428-4. Acesso em: 05 set. 2024. 3 LATHKAR, M. High-Performance Web Apps with FastAPI: The Asynchronous Web Framework Based on Modern Python. [S.l.]: Springer, 2023. 9 Instituto Federal de Educac¸ao, Ci ˜ encias e Tecnologia de Pernambuco. ˆ Campus Paulista. Curso de Analise e Desenvolvimento de Sistemas. 05 de setembro de 2024. ´ 22 LI, B.; RUDZICZ, F. TorontoCL at CMCL 2021 shared task: RoBERTa with multi-stage fine-tuning for eye-tracking prediction. In: CHERSONI, E. et al. (Ed.). Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics. Online: Association for Computational Linguistics, 2021. p. 85–89. Dispon´ıvel em: https://aclanthology.org/2021.cmcl-1.9. Acesso em: 05 set. 2024. 15 LIASHCHYNSKYI, P.; LIASHCHYNSKYI, P. Grid search, random search, genetic algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059, 2019. 14 MELLO, G. L. de et al. PeLLE: Encoder-based language models for Brazilian Portuguese based on open data. 2024. Dispon´ıvel em: https://arxiv.org/abs/2402.19204. Acesso em: 05 set. 2024. 3 NETO, J. R. et al. Chatbot to support frequently asked questions from students in higher education institutions. In: Anais do XIX Encontro Nacional de Inteligencia Artificial e ˆ Computacional. Porto Alegre, RS, Brasil: SBC, 2022. p. 591–601. ISSN 2763-9061. Dispon´ıvel em: https://sol.sbc.org.br/index.php/eniac/article/view/22815. Acesso em: 05 set. 2024. 5 PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825–2830, 2011. 15 PRECHELT, L. Early stopping-but when? In: Neural Networks: Tricks of the trade. [S.l.]: Springer, 2002. p. 55–69. 14 RAJPURKAR, P. et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. 2016. 5 SAYAMA, H. F.; ARAUJO, A. V.; FERNANDES, E. R. Faquad: Reading comprehension dataset in the domain of brazilian higher education. In: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). [S.l.: s.n.], 2019. p. 443–448. 7, 17, 18 SHARMA, V.; TIWARI, A. K. A study on user interface and user experience designs and its tools. World Journal of Research and Review (WJRR), v. 12, n. 6, p. 41–45, 2021. 8 SILVA, E. H. M. D.; LATERZA, J.; FALEIROS, T. de P. New state-of-the-art for question answering on portuguese squad v1.1. Anais do X Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2022), 2022. Dispon´ıvel em: https://api.semanticscholar.org/CorpusID:259755828. Acesso em: 05 set. 2024. 3 SOUZA, F.; NOGUEIRA, R.; LOTUFO, R. Bertimbau: Pretrained bert models for brazilian portuguese. In: CERRI, R.; PRATI, R. C. (Ed.). Intelligent Systems. Cham: Springer International Publishing, 2020. p. 403–417. ISBN 978-3-030-61377-8. 3 VASWANI, A. et al. Attention is all you need. In: GUYON, I. et al. (Ed.). Advances in Neural Information Processing Systems. Curran Associates, Inc., 2017. v. 30. Dispon´ıvel em: https:// proceedings.neurips.cc/paper files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. Acesso em: 05 set. 2024. 3, 4 WAGNER, J. et al. The brwac corpus: A new open resource for brazilian portuguese. In: . [S.l.: s.n.], 2018. 3 WANG, H. et al. Pre-trained language models and their applications. Engineering, v. 25, p. 51–65, 2023. ISSN 2095-8099. Dispon´ıvel em: https://www.sciencedirect.com/science/article/pii/ S2095809922006324. Acesso em: 05 set. 2024. 3 WOLF, T. et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. 2020. 9 Instituto Federal de Educac¸ao, Ci ˜ encias e Tecnologia de Pernambuco. ˆ Campus Paulista. Curso de Analise e Desenvolvimento de Sistemas. 05 de setembro de 2024. ´ 23 WU, Y. et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. ArXiv, abs/1609.08144, 2016. Dispon´ıvel em: https://api.semanticscholar.org/ CorpusID:3603249. Acesso em: 05 set. 2024. 13 WUBE, H. D. et al. Text-based chatbot in financial sector: a systematic literature review. Data Sci. Financ. Econ, v. 2, n. 3, p. 232–259, 2022. 2 ZENG, C. et al. A survey on machine reading comprehension—tasks, evaluation metrics and benchmark datasets. Applied Sciences, v. 10, n. 21, 2020. ISSN 2076-3417. Dispon´ıvel em: https://www.mdpi.com/2076-3417/10/21/7640. Acesso em: 05 set. 2024. 4pt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.subjectProcessamento de Linguagem Naturalpt_BR
dc.subjectResposta a Perguntaspt_BR
dc.subjectChatbotpt_BR
dc.subjectBERTpt_BR
dc.titleProposta de chatbot inteligente baseado na organização acadêmica do Instituto Federal de Pernambucopt_BR
dc.typeArticlept_BR
dc.creator.Latteshttps://lattes.cnpq.br/1236349225751084pt_BR
dc.contributor.advisor1Oliveira, Flávio Rosendo da Silva
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6828380394080049pt_BR
dc.contributor.referee1Silva, Rodrigo Cesar Lira da
dc.contributor.referee2Farias, Felipe Costa
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2442224050349612pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4598958786544738pt_BR
dc.publisher.departmentPaulistapt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOpt_BR
dc.description.resumoO Instituto Federal de Pernambuco abriga uma variedade de documentos norteadores. Entretanto, acessar as informações contidas nesses documentos nem sempre é uma tarefa simples e rápida, devido à sua extensão e complexidade. Diante desse desafio, este artigo propõe o desenvolvimento de um chatbot inteligente destinado a facilitar o acesso as informações institucionais contidas no documento da Organização Acadêmica do Instituto Federal de Pernambuco. O chatbot utiliza HTML, CSS e ReactJs para a interface do cliente, FastAPI para a aplicação do servidor, MySQL como banco de dados e o modelo BERTimbau para a inteligência do sistema. Adicionalmente, foi criado o conjunto de dados OrgAcadQA, baseado no documento da Organização Acadêmica do Instituto, utilizado juntamente com a base de dados SQuAD v1.1-PT-BR no treinamento e avaliação dos modelos na tarefa de Resposta a Perguntas. O modelo BERTimbauLarge demonstrou os resultados mais promissores, alcançando uma Correspondência Exata de 0,78 e uma pontuação F1 de 0,88 na base OrgAcadQA. Esses resultados evidenciaram a eficácia dos modelos BER- Timbau na construção de sistemas de Resposta a Perguntas no contexto da Organização Acadêmica do Instituto Federal de Pernambuco.pt_BR


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples