dc.relation | ADIB, E. et al. Synthetic ecg signal generation using probabilistic diffusion models.
arXiv preprint arXiv:2303.02475, 2023. DOI: 10.48550/arxiv.2303.02475.
ALI, Hassan et al. All Your Fake Detector are Belong to Us: Evaluating Adversarial
Robustness of Fake-News Detectors Under Black-Box Settings. IEEE Access, v. 9,
p. 81678–81692, 2021. DOI: 10.1109/ACCESS.2021.3085875.
ALMEIDA, Ana Luisa et al. Modelo Matemático apoiado por um Algoritmo Genético
para classificação de Fake News na Web. In: ANAIS do VIII Encontro Nacional de
Computação dos Institutos Federais. Evento Online: SBC, 2021. P. 17–20. DOI:
10.5753/encompif.2021.15945.
CARRILLO-PEREZ, Francisco et al. RNA-to-image multi-cancer synthesis using
cascaded diffusion models. bioRxiv, Cold Spring Harbor Laboratory, p. 2023–01,
2023.
CHANG, Y.; PARK, H.; MOON, I. Predicting the cochlear dead regions using a
machine learning-based approach with oversampling techniques. Medicina, v. 57,
p. 1192, 11 2021. DOI: 10.3390/medicina57111192.
CHAWLA, Nitesh V et al. SMOTE: synthetic minority over-sampling technique.
Journal of artificial intelligence research, v. 16, p. 321–357, 2002.
CHOI, Jooyoung et al. Ilvr: Conditioning method for denoising diffusion probabilistic
models. arXiv preprint arXiv:2108.02938, 2021.
CONROY, Nadia K; RUBIN, Victoria L; CHEN, Yimin. Automatic deception detection:
Methods for finding fake news. Proceedings of the association for information
science and technology, Wiley Online Library, v. 52, n. 1, p. 1–4, 2015.
CULLEN, Drake et al. Evaluation of Synthetic Data Generation Techniques in the
Domain of Anonymous Traffic Classification. IEEE Access, v. 10, p. 129612–129625,
2022. DOI: 10.1109/ACCESS.2022.3228507.
ELBATTAH, M. et al. Variational autoencoder for image-based augmentation of
eye-tracking data. Journal of Imaging, v. 7, p. 83, 5 2021. DOI:
10.3390/jimaging7050083.
ELREEDY, D.; ATIYA, A. F.; KAMALOV, F. A theoretical distribution analysis of
synthetic minority oversampling technique (smote) for imbalanced learning. Machine
Learning, 2023. DOI: 10.1007/s10994-022-06296-4.
FATOURECHI, M. et al. Comparison of evaluation metrics in classification
applications with imbalanced datasets. 2008 Seventh International Conference on
Machine Learning and Applications, 2008. DOI: 10.1109/icmla.2008.34.
FERREIRA, Antony L N et al. Um modelo matemático para classificação de fake news
na web. In: ANAIS do Simpósio Brasileiro de Pesquisa Operacional. [S.l.: s.n.], 2020.
FRID-ADAR, M. et al. Gan-based synthetic medical image augmentation for
increased cnn performance in liver lesion classification. Neurocomputing, v. 321,
p. 321–331, 2018. DOI: 10.1016/j.neucom.2018.09.013.
GANI, M. O. et al. Etfpos-idf: a novel term weighting scheme for examination question
classification based on bloom’s taxonomy. IEEE Access, v. 10, p. 132777–132785,
2022. DOI: 10.1109/access.2022.3230592.
GOODFELLOW, Ian J. et al. Generative Adversarial Networks. [S.l.: s.n.], 2014.
arXiv: 1406.2661 [stat.ML].
HE, H.; GARCIA, E. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, v. 21, p. 1263–1284, 9 2009. DOI:
10.1109/tkde.2008.239.
HO, Jonathan; JAIN, Ajay; ABBEEL, Pieter. Denoising Diffusion Probabilistic
Models. [S.l.: s.n.], 2020. arXiv: 2006.11239 [cs.LG].
HORNE, Benjamin D.; ADALI, Sibel. This Just In: Fake News Packs a Lot in Title,
Uses Simpler, Repetitive Content in Text Body, More Similar to Satire than Real
News. [S.l.: s.n.], 2017. arXiv: 1703.09398 [cs.SI].
KALIYAR, Rohit Kumar; SINGH, Navya. Misinformation detection on online social
media-a survey. In: IEEE. 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT). [S.l.: s.n.], 2019. P. 1–6.
KARRAS, Tero; LAINE, Samuli; AILA, Timo. A Style-Based Generator Architecture
for Generative Adversarial Networks. [S.l.: s.n.], 2019. arXiv: 1812.04948 [cs.NE].
KENNEWEG, P.; STALLMANN, D.; HAMMER, B. Novel transfer learning schemes
based on siamese networks and synthetic data. Neural Computing and
Applications, v. 35, p. 8423–8436, 11 2022. DOI: 10.1007/s00521-022-08115-2.
KINGMA, Diederik P; WELLING, Max. Auto-Encoding Variational Bayes. [S.l.: s.n.],
2022. arXiv: 1312.6114 [stat.ML].
KOTELNIKOV, Akim et al. TabDDPM: Modelling Tabular Data with Diffusion
Models. [S.l.: s.n.], 2022. arXiv: 2209.15421 [cs.LG].
KULA, S.; KOZIK, R.; CHORAŚ, M. Implementation of the bert-derived architectures
to tackle disinformation challenges. Neural Computing and Applications, v. 34,
p. 20449–20461, 23 2021. DOI: 10.1007/s00521-021-06276-0.
LAM, M. F. et al. Bddm: bilateral denoising diffusion models for fast and high-quality
speech synthesis. arXiv preprint arXiv:2203.13508, 2022. DOI:
10.48550/arxiv.2203.13508.
LIU, L.; REN, Y. et al. Pseudo numerical methods for diffusion models on manifolds.
arXiv preprint arXiv:2202.09778, 2022. DOI: 10.48550/arxiv.2202.09778.
LIU, S.; SU, D.; YU, D. Diffgan-tts: high-fidelity and efficient text-to-speech with
denoising diffusion gans. arXiv preprint arXiv:2201.11972, 2022. DOI:
10.48550/arxiv.2201.11972.
LIU, Y.; WU, Y. Early detection of fake news on social media through propagation path
classification with recurrent and convolutional networks. Proceedings of the Aaai
Conference on Artificial Intelligence, v. 32, 1 2018. DOI:
10.1609/aaai.v32i1.11268.
LU, Yingzhou; WANG, Huazheng; WEI, Wenqi. Machine Learning for Synthetic Data
Generation: a Review. arXiv preprint arXiv:2302.04062, 2023.
LYU, Zhaoyang et al. Accelerating diffusion models via early stop of the diffusion
process. arXiv preprint arXiv:2205.12524, 2022.
MOZÓ, A. et al. Synthetic flow-based cryptomining attack generation through
generative adversarial networks. Scientific Reports, v. 12, 1 2022. DOI:
10.1038/s41598-022-06057-2.
MUKHERJEE, Mimi; KHUSHI, Matloob. SMOTE-ENC: A novel SMOTE-based
method to generate synthetic data for nominal and continuous features. Applied
System Innovation, MDPI, v. 4, n. 1, p. 18, 2021.
NASIR, Jamal Abdul; KHAN, Osama Subhani; VARLAMIS, Iraklis. Fake news
detection: A hybrid CNN-RNN based deep learning approach. International Journal
of Information Management Data Insights, Elsevier, v. 1, n. 1, p. 100007, 2021.
NICHOL, Alexander Quinn; DHARIWAL, Prafulla. Improved denoising diffusion
probabilistic models. In: PMLR. INTERNATIONAL Conference on Machine Learning.
[S.l.: s.n.], 2021. P. 8162–8171.
PARIKH, Shivam B; ATREY, Pradeep K. Media-rich fake news detection: A survey. In:
IEEE. 2018 IEEE conference on multimedia information processing and retrieval
(MIPR). [S.l.: s.n.], 2018. P. 436–441.
PASZKE, Adam et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, v. 32, 2019.
PÉREZ-ROSAS, Verónica et al. Automatic detection of fake news. arXiv preprint
arXiv:1708.07104, 2017.
POUDEVIGNE-DURANCE, T.; JONES, O. D.; QIN, Y. Mawgan: a generative
adversarial network to create synthetic data from datasets with missing data.
Electronics, v. 11, p. 837, 6 2022. DOI: 10.3390/electronics11060837.
RAJABI, Amirarsalan; GARIBAY, Ozlem Ozmen. TabFairGAN: Fair Tabular Data
Generation with Generative Adversarial Networks. Machine Learning and
Knowledge Extraction, v. 4, n. 2, p. 488–501, 2022. ISSN 2504-4990. DOI:
10.3390/make4020022.
RUBIN, Victoria L; CONROY, Niall J; CHEN, Yimin. Towards news verification:
Deception detection methods for news discourse. In: HAWAII International
Conference on System Sciences. [S.l.: s.n.], 2015. P. 5–8.
RUCHANSKY, Natali; SEO, Sungyong; LIU, Yan. Csi: A hybrid deep model for fake
news detection. In: PROCEEDINGS of the 2017 ACM on Conference on Information
and Knowledge Management. [S.l.: s.n.], 2017. P. 797–806.
SALIMANS, T. et al. Improved techniques for training gans. arXiv preprint
arXiv:1606.03498, 2016. DOI: 10.48550/arxiv.1606.03498.
SEGHOUANE, Abd-Krim; AMARI, Shun-Ichi. The AIC criterion and symmetrizing the
Kullback–Leibler divergence. IEEE Transactions on Neural Networks, IEEE, v. 18,
n. 1, p. 97–106, 2007.
SHAHZAD, K. et al. A scoping review of the relationship of big data analytics with
context-based fake news detection on digital media in data age. Sustainability, v. 14,
p. 14365, 21 2022. DOI: 10.3390/su142114365.
SHARMA, J. et al. Deepfakes classification of faces using convolutional neural
networks. Traitement Du Signal, v. 39, p. 1027–1037, 3 2022. DOI:
10.18280/ts.390330.
SHARMA, Karishma et al. Combating Fake News: A Survey on Identification and
Mitigation Techniques. [S.l.: s.n.], 2019. arXiv: 1901.06437 [cs.LG].
Instituto Federal de Pernambuco. Campus Paulista. Curso de Análise e Desenvolvimento de Sistemas.
06 de dezembro de 2023.
19
SHU, K. et al. Hierarchical propagation networks for fake news detection: investigation
and exploitation. Proceedings of the International Aaai Conference on Web and
Social Media, v. 14, p. 626–637, 2020. DOI: 10.1609/icwsm.v14i1.7329.
SHU, Kai et al. Fake news detection on social media: A data mining perspective. ACM
SIGKDD explorations newsletter, ACM New York, NY, USA, v. 19, n. 1, p. 22–36,
2017.
SINGH, A.; OGUNFUNMI, T. An overview of variational autoencoders for source
separation, finance, and bio-signal applications. Entropy, v. 24, p. 55, 1 2021. DOI:
10.3390/e24010055.
ST, S. et al. Deep learning model for deep fake face recognition and detection. Peerj
Computer Science, v. 8, e881, 2022. DOI: 10.7717/peerj-cs.881.
SUN, Guangzhi et al. Fully-hierarchical fine-grained prosody modeling for
interpretable speech synthesis. In: IEEE. ICASSP 2020-2020 IEEE international
conference on acoustics, speech and signal processing (ICASSP). [S.l.: s.n.], 2020.
P. 6264–6268.
SUROSO, D.; CHERNTANOMWONG, P.; SOORAKSA, P. Synthesis of a small
fingerprint database through a deep generative model for indoor localisation.
Elektronika Ir Elektrotechnika, v. 29, p. 69–75, 1 2023. DOI:
10.5755/j02.eie.31905.
TAN, L.; LU, J.; JIANG, H. Tomato leaf diseases classification based on leaf images: a
comparison between classical machine learning and deep learning methods.
AgriEngineering, v. 3, p. 542–558, 3 2021. DOI: 10.3390/agriengineering3030035.
TOBIN, J. et al. Domain randomization for transferring deep neural networks from
simulation to the real world. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017. DOI: 10.1109/iros.2017.8202133.
VOSOUGHI, Soroush; ROY, Deb; ARAL, Sinan. The spread of true and false news
online. Science, v. 359, n. 6380, p. 1146–1151, 2018. DOI: 10.1126/science.aap9559.
eprint: https://www.science.org/doi/pdf/10.1126/science.aap9559.
WANG, Shihan; TERANO, Takao. Detecting rumor patterns in streaming social media.
In: IEEE. 2015 IEEE international conference on big data (big data). [S.l.: s.n.], 2015.
P. 2709–2715.
WANG, William Yang. ”Liar, Liar Pants on Fire”: A New Benchmark Dataset for
Fake News Detection. [S.l.: s.n.], 2017. arXiv: 1705.00648 [cs.CL].
WILCOXON, F. Individual comparisons by ranking methods. Biom. Bull., 1,
80–83. [S.l.: s.n.], 1945.
WYATT, J. et al. Anoddpm: anomaly detection with denoising diffusion probabilistic
models using simplex noise. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2022. DOI:
10.1109/cvprw56347.2022.00080.
XIAO, X.; GANGULI, S.; PANDEY, V. Vae-info-cgan. Proceedings of the 13th ACM
SIGSPATIAL International Workshop on Computational Transportation Science,
2020. DOI: 10.1145/3423457.3429361.
Instituto Federal de Pernambuco. Campus Paulista. Curso de Análise e Desenvolvimento de Sistemas.
06 de dezembro de 2023.
20
XU, Lei et al. Modeling tabular data using conditional gan. Advances in Neural
Information Processing Systems, v. 32, 2019.
ZHOU, S.; XU, J. et al. Numerical simulation on the larger concentration difference
characteristics of dense granular jet in a coaxial gas stream. The Canadian Journal
of Chemical Engineering, v. 101, p. 477–491, 1 2022. DOI: 10.1002/cjce.24361.
ZHOU, Xinyi; ZAFARANI, Reza. A survey of fake news: Fundamental theories,
detection methods, and opportunities. ACM Computing Surveys (CSUR), ACM New
York, NY, USA, v. 53, n. 5, p. 1–40, 2020. | pt_BR |