dc.relation | BARROS, A. H. C. et al. Pedotransfer functions to estimate water retention parameters of
soils in northeastern brazil. Revista Brasileira de Ciˆencia do Solo, Sociedade Brasileira
de Ciˆencia do Solo, v. 37, p. 379–391, 4 2013. ISSN 0100-0683. Dispon´ıvel em: ⟨http:
//www.scielo.br/scielo.php?script=sci arttext&pid=S0100-06832013000200009&lng=en&tlng=en⟩.
3, 10, 12, 13
BERRAR, D. Cross-validation. In: . Elsevier, 2018. v. 1, p. 542–545. ISBN 9780128096338.
Dispon´ıvel em: ⟨https://www.researchgate.net/publication/324701535 Cross-Validation⟩. 10
BOUMA, J. Using soil survey data for quantitative land evaluation. In: . Advances in Soil
Science: Volume 9. New York, NY: Springer US, 1989. p. 177–213. ISBN 978-1-4612-3532-3.
Dispon´ıvel em: ⟨https://doi.org/10.1007/978-1-4612-3532-3 4⟩. 3
BOUYOUCOS, G. J. A recalibration of the hydrometer method for making mechanical
analysis of soils1. Agronomy Journal, John Wiley Sons, Ltd, v. 43, p. 434–438, 9
1951. ISSN 1435-0645. Dispon´ıvel em: ⟨https://onlinelibrary.wiley.com/doi/full/10.2134/
agronj1951.00021962004300090005xhttps://onlinelibrary.wiley.com/doi/abs/10.2134/agronj1951.
00021962004300090005xhttps://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj1951.
00021962004300090005x⟩. 3
BREIMAN, L. Random forests. Machine Learning, Springer, v. 45, p. 5–32, 10 2001. ISSN
08856125. Dispon´ıvel em: ⟨https://link.springer.com/article/10.1023/A:1010933404324⟩. 11
CATLEY, C. et al. Extending crisp-dm to incorporate temporal data mining of multidimensional
medical data streams: A neonatal intensive care unit case study. In: 2009 22nd IEEE International
Symposium on Computer-Based Medical Systems. [S.l.: s.n.], 2009. p. 1–5. 3, 4
CHAI, T.; DRAXLER, R. R. Root mean square error (rmse) or mean absolute error (mae)?
– arguments against avoiding rmse in the literature. Geoscientific Model Development,
Copernicus GmbH, v. 7, p. 1247–1250, 6 2014. ISSN 1991-9603. Dispon´ıvel em: ⟨https:
//gmd.copernicus.org/articles/7/1247/2014/⟩. 14
CHICCO, D.; WARRENS, M. J.; JURMAN, G. The coefficient of determination r-squared
is more informative than smape, mae, mape, mse and rmse in regression analysis evaluation.
PeerJ Computer Science, v. 7, p. e623, jul. 2021. ISSN 2376-5992. Dispon´ıvel em: ⟨https:
//doi.org/10.7717/peerj-cs.623⟩. 15
COIMBRA, J. L. M. et al. Conseq¨uˆencias da multicolinearidade sobre a an´alise de trilha
em canola. Ciˆencia Rural, Universidade Federal de Santa Maria, v. 35, p. 347–352, 4 2005.
ISSN 0103-8478. Dispon´ıvel em: ⟨http://www.scielo.br/scielo.php?script=sci arttext&pid=
S0103-84782005000200015&lng=pt&tlng=pt⟩. 9
CORT´eS, U. et al. Artificial intelligence and environmental decision support systems. Appl. Intell.,
v. 13, p. 77–91, 6 2000. Dispon´ıvel em: ⟨http://dx.doi.org/10.1023/A:1008331413864⟩. 2
DONAGEMMA, G. K. et al. Manual de m´etodos de an´alise de solo. 2nd rev. ed.. ed. Rio de Janeiro:
Embrapa Solos, 2011. 230 p. (Embrapa Solos. Documentos, 132). Biblioteca(s): Embrapa Solos.
ISSN 1517-2627. Dispon´ıvel em: ⟨https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104933/1/
Manual-de-Mtodos-de-Anilise-de-Solo.pdf⟩. 7, 17
FILHO., T. B. O.; CAETANO., A. R.; OTTONI., M. V. In situ field capacity in brazilian soils and
a derived irrigation management practice based on water suction. Journal of Agricultural Science,
v. 14, n. 3, p. 17, 2022. 2
GUNARATHNA, M. H. et al. Machine learning approaches to develop pedotransfer functions
for tropical sri lankan soils. Water 2019, Vol. 11, Page 1940, Multidisciplinary Digital
Publishing Institute, v. 11, p. 1940, 9 2019. ISSN 2073-4441. Dispon´ıvel em: ⟨https:
//www.mdpi.com/2073-4441/11/9/1940/htmhttps://www.mdpi.com/2073-4441/11/9/1940⟩. 3, 4
HEMPHILL, J. F. Interpreting the magnitudes of correlation coefficients. American Psychologist,
v. 58, p. 78–79, 1 2003. ISSN 1935-990X. Dispon´ıvel em: ⟨http://doi.apa.org/getdoi.cfm?doi=10.
1037/0003-066X.58.1.78⟩. 15
HILLEL, D. Introduction to Environmental Soil Physics. Elsevier, 2003. 1-494 p.
ISBN 9780123486554. Dispon´ıvel em: ⟨https://linkinghub.elsevier.com/retrieve/pii/
B9780123486554X5000X⟩. 7
HODNETT, M. G.; TOMASELLA, J. Marked differences between van genuchten soil waterretention
parameters for temperate and tropical soils: A new water-retention pedo-transfer
functions developed for tropical soils. Geoderma, v. 108, p. 155–180, 2002. ISSN 00167061.
Dispon´ıvel em: ⟨https://www.researchgate.net/publication/222514532 Marked differences
between van Genuchten soil water-retention parameters for temperate and tropical soils A new
water-retention pedo-transfer functions developed for tropical soils⟩. 2, 5, 10, 12
LAVALLE, S. M.; BRANICKY, M. S.; LINDEMANN, S. R. On the relationship between classical
grid search and probabilistic roadmaps. The International Journal of Robotics Research, v. 23, n. 7-8,
p. 673–692, 2004. Dispon´ıvel em: ⟨https://doi.org/10.1177/0278364904045481⟩. 11
MORAES, S.; LIBARDI, P.; NETO, D. D. Problemas metodol´ogicos na obtenc¸ ˜ao da curva de
retenc¸ ˜ao da ´agua pelo solo. Scientia Agricola, FapUNIFESP (SciELO), v. 50, p. 383–392, 12 1993.
Dispon´ıvel em: ⟨https://www.researchgate.net/publication/250043217 Problemas metodologicos
na obtencao da curva de retencao da agua pelo solo⟩. 2
MORENO, J. J. M. et al. Using the r-mape index as a resistant measure of forecast accuracy.
Psicothema, Psicothema, v. 25, p. 500–6, 2013. ISSN 1886-144X. Dispon´ıvel em: ⟨http:
//www.ncbi.nlm.nih.gov/pubmed/24124784⟩. 14
MYTTENAERE, A. et al. Mean absolute percentage error for regression models. Neurocomputing,
v. 192, p. 38–48, 6 2016. ISSN 09252312. Dispon´ıvel em: ⟨https://linkinghub.elsevier.com/retrieve/
pii/S0925231216003325⟩. 14
OLIVEIRA, L. B. et al. Func¸ ˜oes de pedotransferˆencia para predic¸ ˜ao da umidade retida a potenciais
espec´ıficos em solos do estado de pernambuco. Revista Brasileira de Ciˆencia do Solo, Sociedade
Brasileira de Ciˆencia do Solo, v. 26, p. 315–323, 6 2002. ISSN 0100-0683. Dispon´ıvel em: ⟨http:
//www.scielo.br/scielo.php?script=sci arttext&pid=S0100-06832002000200004&lng=pt&tlng=pt⟩.
2, 3, 10, 13, 23
OTTONI, M. V. et al. Hydrophysical database for brazilian soils (hybras) and pedotransfer functions
for water retention. Vadose Zone Journal, John Wiley Sons, Ltd, v. 17, p. 1–17, 1 2018. ISSN
1539-1663. Dispon´ıvel em: ⟨https://onlinelibrary.wiley.com/doi/full/10.2136/vzj2017.05.0095https:
//onlinelibrary.wiley.com/doi/abs/10.2136/vzj2017.05.0095https://acsess.onlinelibrary.wiley.com/
doi/10.2136/vzj2017.05.0095⟩. 5, 6
PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, v. 12, p. 2825–2830, 2011. 10, 13
PEREIRA, T. dos S. et al. The use of artificial intelligence for estimating soil resistance to
penetration. Engenharia Agr´ıcola, Associac¸ ˜ao Brasileira de Engenharia Agr´ıcola, v. 38, p. 142–148,
1 2018. ISSN 1809-4430. Dispon´ıvel em: ⟨http://www.scielo.br/scielo.php?script=sci arttext&pid=
S0100-69162018000100142&lng=en&tlng=en⟩. 3
PODGORELEC, V. et al. Decision trees: An overview and their use in medicine. Journal
of Medical Systems, Springer, v. 26, p. 445–463, 10 2002. ISSN 01485598. Dispon´ıvel em:
⟨https://link.springer.com/article/10.1023/A:1016409317640⟩. 11
RAMCHARAN, A. et al. A soil bulk density pedotransfer function based on machine learning: A
case study with the ncss soil characterization database. Soil Science Society of America Journal,
John Wiley Sons, Ltd, v. 81, p. 1279–1287, 11 2017. ISSN 1435-0661. Dispon´ıvel em: ⟨https:
//onlinelibrary.wiley.com/doi/full/10.2136/sssaj2016.12.0421https://onlinelibrary.wiley.com/doi/abs/
10.2136/sssaj2016.12.0421https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj2016.12.0421⟩.
3, 4
SAHOUR, H. et al. Random forest and extreme gradient boosting algorithms for streamflow
modeling using vessel features and tree-rings. Environmental Earth Sciences, Springer Science
and Business Media Deutschland GmbH, v. 80, 11 2021. ISSN 18666299. Dispon´ıvel em:
⟨https://www.researchgate.net/publication/355828449 Random forest and extreme gradient
boosting algorithms for streamflow modeling using vessel features and tree-rings⟩. 11
SANTOS, H. G. et al. Sistema Brasileiro de Classificac¸ ˜ao de Solos. 5th. ed. Bras´ılia, DF: Embrapa,
2018. 356 p. Il. color. ; 16 cm x 23 cm. ISBN 978-85-7035-800-4. 6, 7, 17
SAXTON, K. E. et al. Estimating generalized soil-water characteristics from texture. Soil Science
Society of America Journal, Wiley, v. 50, p. 1031–1036, 7 1986. ISSN 0361-5995. Dispon´ıvel em:
⟨https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj1986.03615995005000040039x⟩. 3
SCHR¨oER, C.; KRUSE, F.; G´oMEZ, J. M. A systematic literature review on applying crisp-dm
process model. Procedia Computer Science, v. 181, p. 526–534, 2021. ISSN 1877-0509. CENTERIS
2020 - International Conference on ENTERprise Information Systems / ProjMAN 2020 -
International Conference on Project MANagement / HCist 2020 - International Conference on
Health and Social Care Information Systems and Technologies 2020, CENTERIS/ProjMAN/HCist
2020. Dispon´ıvel em: ⟨https://www.sciencedirect.com/science/article/pii/S1877050921002416⟩. 4
SEDAGHAT, A. et al. Developing pedotransfer functions using sentinel-2 satellite spectral indices
and machine learning for estimating the surface soil moisture. Journal of Hydrology, Elsevier, v. 606,
p. 127423, 3 2022. ISSN 0022-1694. 3, 4
SHRESTHA, N. Detecting multicollinearity in regression analysis. American Journal of Applied
Mathematics and Statistics, Science and Education Publishing Co., Ltd., v. 8, p. 39–42, 6 2020. ISSN
2328-7306. Dispon´ıvel em: ⟨http://pubs.sciepub.com/ajams/8/2/1/index.html⟩. 9, 12, 13
SILVA, P. d. et al. Func¸ ˜oes de pedotransferˆencia para as curvas de retenc¸ ˜ao de ´agua e
de resistˆencia do solo `a penetrac¸ ˜ao. Revista Brasileira de Ciˆencia do Solo, Sociedade
Brasileira de Ciˆencia do Solo, v. 32, p. 1–10, 2 2008. ISSN 0100-0683. Dispon´ıvel em: ⟨http:
//www.scielo.br/scielo.php?script=sci arttext&pid=S0100-06832008000100001&lng=pt&tlng=pt⟩.
2, 10, 12
SU, X.; YAN, X.; TSAI, C. L. Linear regression. Wiley Interdisciplinary Reviews: Computational
Statistics, John Wiley Sons, Ltd, v. 4, p. 275–294, 5 2012. ISSN 1939-0068. Dispon´ıvel em:
⟨https://onlinelibrary.wiley.com/doi/full/10.1002/wics.1198https://onlinelibrary.wiley.com/doi/abs/
10.1002/wics.1198https://wires.onlinelibrary.wiley.com/doi/10.1002/wics.1198⟩. 12
SUTTER, J.; KALIVAS, J. Comparison of forward selection, backward elimination, and
generalized simulated annealing for variable selection. Microchemical Journal, Elsevier, v. 47,
p. 60–66, 2 1993. ISSN 0026265X. Dispon´ıvel em: ⟨https://linkinghub.elsevier.com/retrieve/pii/
S0026265X8371012X⟩. 13
TOMASELLA, J.; HODNETT, M. G.; ROSSATO, L. Pedotransfer functions for the estimation of
soil water retention in brazilian soils. Soil Science Society of America Journal, v. 64, p. 327–338,
1 2000. ISSN 0361-5995. Dispon´ıvel em: ⟨https://acsess.onlinelibrary.wiley.com/doi/10.2136/
sssaj2000.641327x⟩. 2, 5, 8, 10, 12, 13
XIA, Z. et al. Application of genetic algorithmsupport vector regression model to predict damping
of cantilever beam with particle damper. Journal of Low Frequency Noise Vibration and Active
Control, SAGE Publications Inc., v. 36, p. 138–147, 6 2017. ISSN 20484046. Dispon´ıvel em:
⟨https://journals.sagepub.com/doi/10.1177/0263092317711987⟩. 12
YE, Z. et al. Tackling environmental challenges in pollution controls using artificial intelligence: A
review. Science of The Total Environment, v. 699, p. 134279, 2020. ISSN 0048-9697. Dispon´ıvel em:
⟨https://www.sciencedirect.com/science/article/pii/S0048969719342627⟩. 2
YOO, W. et al. A study of effects of multicollinearity in the multivariable analysis. International
journal of applied science and technology, NIH Public Access, v. 4, p. 9–19, 10 2014.
ISSN 2221-0997. Dispon´ıvel em: ⟨http://www.ncbi.nlm.nih.gov/pubmed/25664257http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4318006⟩. 9 | pt_BR |