dc.relation | ABBOTT, Michael B.; BASCO, David R. Computational fluid dynamics. New-York:
Longman Scientific & Technical, 1989.
ALE, J.; SHARMA, S.; KATIYAR, A.; SINGH, S.; KULKARNI, A. Thermal Analysis of a
Plate Heat Exchanger Using COMSOL Multiphysics. IOP Conference Series: Materials
Science and Engineering, v. 1030, n. 1, p. 012070, 2020.
ANDERSON, John David; WENDT, John. Computational fluid dynamics. New York:
McGraw-Hill, 1995.
BERGLES, A. E., & KANDLIKAR, S. G. (2008). On the selection of surface geometries
for compact heat exchangers. Journal of Heat Transfer, 130(12), 1-11.
CHEN, Zhe; ZHOU, Yan; LIU, Zhen; JIANG, Lei; YAN, Jianhua; WANG, Guiren. Thermal
performance investigation of shell-and-tube heat exchangers with triply periodic
minimal surfaces. Applied Thermal Engineering, v. 135, p. 768-777, 2018.
CHEN, B., ET AL. (2022). "Numerical Investigation of Heat Transfer Performance in
Triple Periodic Minimal Surface-based Heat Exchangers with Peltier Effects." Applied
Thermal Engineering, 150, 789-798.
CHUNG, T. J et al. Computational fluid dynamics. Cambridge university press, 2002.
COMSOL. COMSOL Multiphysics. Disponível em: https://www.comsol.com/. Acesso em:
09 mai. 2023.
DIERKING, I. (2003). Textures of liquid crystals. Weinheim: Wiley-VCH.
DIERKES, U., HILDEBRANDT, S., & SAUVIGNY, F. (2010). Minimal Surfaces. Springer
Science & Business Media.
DOS SANTOS SILVA, Daniel; MACAGNA, Mario H. DESENVOLVIMENTO DE UM
PROGRAMA COMPUTACIONAL PARA PROJETO DE COLETOR SOLAR DE
PLACA PLANA. In: Congresso Brasileiro de Energia Solar-CBENS. 2012.
EDBERG, S. C.; GALLO, P.; KONTNICK, C. Analysis of the virulence characteristics of
bacteria isolated from bottled, water cooler, and tap water. Microbial Ecology in Health
and Disease, v. 9, n. 2, p. 67-77, 1996.
GIUSTI, E. (1984). Minimal Surfaces and Functions of Bounded Variation. Springer Verlag.
HAN, Lu; CHE, Shunai. An overview of materials with triply periodic minimal surfaces
and related geometry: From biological structures to self‐assembled systems. Advanced
Materials, v. 30, n. 17, p. 1705708, 2018.
HAYASHI, Koichiro et al. Superiority of Triply Periodic Minimal Surface Gyroid
Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS
Applied Materials & Interfaces, 2023.
HOFFMAN, D., & OSSERMAN, R. (1997). The Geometry of the Generalized Schwarz
Lantern. Pacific Journal of Mathematics, 178(1), 111-120.
INCROPERA, F. P., & DEWITT, D. P. (2002). Fundamentals of heat and mass transfer.
John Wiley & Sons.
JOHNSON, A., MARTINEZ, J., & THOMPSON, J. (2018). Triply Periodic Minimal
Surfaces: A Comprehensive Review. Journal of Heat Transfer, 140(12), 124501.
KAYS, W. M., & LONDON, A. L. (1984). Compact heat exchangers. McGraw-Hill.
KARCHER, Hermann; POLTHIER, Konrad. Construction of triply periodic minimal
surfaces. Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, v. 354, n. 1715, p. 2077-2104, 1996.
KREITH, Frank; MANGLIK, Raj M.; BOHN, Mark S. Princípios de Transferência de
Calor. Tradução da 7ª Edição Norte-Americana. São Paulo: [Editora], 2016. 676 p. ISBN
9788522122028.
LEE, Hyung Suk; KIM, Ji Hoon. Design and analysis of a shell-and-tube heat exchanger
with a triply periodic minimal surface. Applied Thermal Engineering, v. 87, p. 763-773,
2015.
LEE, J., ET AL. (2021). "CFD-Based Mathematical Modeling and Simulation of Peltier
Devices for Cooling Applications." International Journal of Heat and Mass Transfer, 174,
121296.
LEE, Dong-Wook; KHAN, Kamran A.; AL-RUB, Rashid K. Abu. Stiffness and yield
strength of architectured foams based on the Schwarz Primitive triply periodic minimal
surface. International Journal of Plasticity, v. 95, p. 1-20, 2017.
LI, G., HU, P., & YU, G. (2014). Thermal energy storage using triply periodic minimal
surface structures. Applied Energy, 126, 137-144.
LI, X., ET AL. (2020). "Thermoelectric Cooling and Heating Devices Based on Peltier
Effects: A Review." Renewable and Sustainable Energy Reviews, 127, 109873.
LIU, J.; DING, J.; LUO, X.; YANG, Y.; TIAN, Y. Simulation of water cooling for
computer processors with COMSOL Multiphysics. Applied Thermal Engineering, v. 195,
p. 116064, 2021.
OLIVEIRA, Aylson Costa et al. Resfriamento artificial em fornos retangulares para a
produção de carvão vegetal. Revista Árvore, v. 39, p. 769-778, 2015.
MANSUR, Sérgio Said; MERCIER, Pierre. Simulação numérica de trocadores de calor
multitubulares equipados com fitas helicoidais externamente aos tubos. Revista Brasileira
de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, p. 79-90,
1998.
MEEKS III, William H. The theory of triply periodic minimal surfaces. Indiana University
Mathematics Journal, p. 877-936, 1990.
NGUYEN-XUAN, H. et al. Modelling of functionally graded triply periodic minimal
surface (FG-TPMS) plates. Composite Structures, v. 315, p. 116981, 2023.
OLIVEIRA, Maykol Douglas Monteiro de. Modelagem e avaliação térmica de um
trocador de calor tipo Water-Cooling para dissipação de calor num processador
comercial. 2021. Trabalho de Conclusão de Curso.
OSSERMAN, R. (1986). A Survey of Minimal Surfaces. Dover Publications.
RANGEL, Sergio de Camargo. Simulação transiente de um sistema de refrigeração
doméstico: análise paramétrica. 2007. Tese de Doutorado. Universidade de São Paulo.
SCHOEN, Alan H. Reflections concerning triply-periodic minimal surfaces. Interface
focus, v. 2, n. 5, p. 658-668, 2012.
SHEVCHENKO, Vladimir et al. Prediction of Cellular Structure Mechanical Properties
with the Geometry of Triply Periodic Minimal Surfaces (TPMS). ACS Omega, 2023.
SMITH, A., ET AL. (2021). "Enhancing Heat Transfer Efficiency in Triple Periodic
Minimal Surface-based Heat Exchangers using Peltier Effects." International Journal of
Heat and Mass Transfer, 123, 567-578.
SMITH, R., BROWN, K., & DAVIS, M. (2020). Comparative Analysis of Traditional
Water Coolers in Industrial Applications. International Journal of Thermal Sciences, 155,
106556.
SIEMENS ENERGY. Siemens Energy optimizes gas turbine performance using
COMSOL Multiphysics simulation software. Disponível em:
https://www.comsol.com/case-study/siemens-energy-optimizes-gas-turbine-performance using-comsol-multiphysics-simulation-software-83037. Acesso em: 09 mai. 2023]
SILVA, Willian Virgilio Santos; TAVARES, Lenon; RODRIGUES, Renan. Water cooler
para resfriamento de componentes do computador. Engenharia de Computação em
Revista, 2012.
TANG, Wei et al. Analysis on the convective heat transfer process and performance
evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and
Iwp. International Journal of Heat and Mass Transfer, v. 201, p. 123642, 2023.
YANG, H., ET AL. (2019). "Application of Peltier Devices for High-Power Electronics
Cooling." IEEE Transactions on Components, Packaging and Manufacturing Technology,
9(10), 2021-2027.
YU, Shixiang; SUN, Jinxing; BAI, Jiaming. Investigation of functionally graded TPMS
structures fabricated by additive manufacturing. Materials & Design, v. 182, p. 108021,
2019.
WANG, Z., HUANG, X., XU, G., LI, Q., & JIANG, P. (2019). Application of triply
periodic minimal surfaces in low-temperature cooling. Applied Thermal Engineering, 152
WHITE, J. H. (1989). Triply Periodic Minimal Surfaces of Genus Three. Journal of
Differential Geometry, 29(2), 363-377.
Wolfram Demonstrations Project (s.d.). An Enneper-Weierstrass Minimal Surface.
Disponível em: https://demonstrations.wolfram.com/AnEnneperWeierstrassMinimalSurface/.
Acesso em: 31 maio 2023.
Wolfram Alpha (s.d.). Equação de superfície mínima triplamente periódica. Disponível
em:
https://www.wolframalpha.com/input?i=%E2%88%82u++2+++%E2%88%82++2++z+%E2
%80%8B++%2B++%E2%88%82v++2+++%E2%88%82++2++z+%E2%80%8B++%2B2h%
28u%2Cv%29sinh%28z%29%3D0. Acesso em: 31 maio 2023.
ZHANG, Y., ET AL. (2018). "Enhanced Thermoelectric Performance of Multilayered
Semiconductor Nanowires for Peltier Cooling." Applied Physics Letters, 112(8), 083901. | pt_BR |