Mostrar registro simples

dc.creatorFerreira, Júlia Mikaelle Gomes de Andrade
dc.date.accessioned2023-11-07T23:27:26Z
dc.date.available2023-11-07T23:27:26Z
dc.date.issued2023-07-17
dc.identifier.citationFERREIRA, Júlia Mikaelle Gomes de Andrade. Análise numérica de trocador de calor do tipo tubo duplo utilizando nanofluído a base de grafeno. 2023. 76 f. Trabalho de Conclusão de Curso (Curso de Engenharia Mecânica) – Instituto Federal de Ciência e Tecnologia de Pernambuco, Recife, 2023.pt_BR
dc.identifier.urihttps://repositorio.ifpe.edu.br/xmlui/handle/123456789/1077
dc.description.abstractHeat exchangers are devices that allow heat exchange between two or more fluids that are separated by some solid interface and that are at different temperatures. Present in many industries, this device makes this energy exchange happen indirectly, through elements that separate the fluids, or directly, in a mixing process. The arrangements for the flow of these fluids can be in parallel flow, or in counter flow. Heat transfer fluids play a vital role in many industries and processes, including power generation, chemical processes, heating and cooling processes, transportation, microelectronics and many other areas. Among the main fluids we find water, mineral oils and ethylene glycol. However, common heat transfer fluids have a low energy yield when compared to solid materials, so, to meet the needs of the work, a new heat exchange fluid was produced, the nanofluid, which is nothing more than a common fluid, with solid nanoparticles dissolved in its composition. Solid particles that supply the energetic deficiency of the common fluid. Taking into account its importance for the industry as a whole, through a computational numerical study (CFD), the present work aims to investigate the effectiveness of the use of graphene-based nanofluid, which nanofluid parameter interferes and helps in the increase of heat exchange efficiency performance in double tube heat exchangers.pt_BR
dc.format.extent76 p.pt_BR
dc.languagept_BRpt_BR
dc.relationABBASIAN, A. A.A.; AMANI, J. Experimental study on the effect of TiO2– waternanofluid on heat transfer and pressure drop. Experimental Thermal and Fluid Science, v. 42, p. 107– 115, 2012. AMEEL, B., Degroote, J., T’Joen, C., Huisseune, H., Schampheleire, S., Vierendeels, J., Paepe, M. Accounting for the effect of the heat exchanger length in the performance evaluation of compact fin and tube heat exchangers. Applied Thermal Engineering, 65; 2014. ARAÚJO, E. C. C. Trocadores de calor. Série Apontamentos, EdUFSCAR: SãoCarlos, 2002. AKYÜREK, E. F.; GELIŞ, K.; ŞAHIN, B.; MANAY, E. Experimental Analysis for HeatTransfer of nanofluid with Wire Coil Turbulators in a Concentric Tube Heat Exchanger. Results in Physics, v. 9, p. 376-389, 2018. ARSHAD, A.; JABBAL, M.; YAN, Y.; REAY, D.; A Review on Graphene based Nanofluids: Preparation, Characterization and Applications. Journal of Molecular Liquids,v 279, p. 444-484, 2019a. ASKARI, S.; LOTFI, R.; SEIFKORDI, A.; RASHIDI, A. M.; KOOLIVAND, H.A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous grapheme nanofluids. Energy Conversion and Management, v. 109, p. 10-18,2016. BAHIRAEI, M.; SALMI, H. K.; SAFAEI, M. R. Effect of employing a new biological nanofluid containing functionalized grapheme nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Conversionand Management, v. 180, p. 72-82, 2019a. BAHIRAEI, M.; MAZAHERI, N.; RIZEHVANDI, A.; Application of a hybrid nanofluid containing Graphene nanoplaletet-platinum composite power in a triple-tube heat exchanger equipped with inserted ribs. Applied Thermal Engineering, v. 149, p. 588- 601, 2019b. BORDIGNON, R. Desempenho tribológico de Grafeno funcionalizado como aditivo emóleo lubrificante de baixa viscosidade. 2018. 80f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Centro de Tecnologia, Universidade Federal deSanta Catarina,Florianópolis, Santa Catarina, 2018. COLEBROOK, C.F. Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws. Journal of the Institutionof Civil Engineers, v. 11, p. 133-161, 1939. COSTA, J. A. P. da; MICHALEWICZ, J. S.; MENEZES, F. D.; LIMA, M. V. F.; OCHOA, A. A. V.; SILVA, J. V. C.; Simulação computacional de trocadores de calor casco e tubo utilizando nanofluido como fluido de trabalho. VI Congresso Argentino de Ingeniería Mecânica, Tucumán, 2018. ÇENGEL, Y. A. Transferência de calor e massa: uma abordagem prática. São Paulo:McGraw-Hill, 2009. ÇENGEL, Yunus A. Transferência de calor e massa: uma abordagem prática. 4ed. Porto Alegre: AMGH, 2012. DUTRA, C. J. C., PRIMO, A. R., MAGNANI, F. S., HENRÍQUEZ, G. J. R. Relatório Final do Projeto P49 – Projeto COGENCASA. Universidade Federal de Pernambuco.UFPE. Recife 2009. EDA, G.; FANCHINI, G.; CHHOWALLA, MANISH. Large-area ultrathin films of reduced grapheme oxide as a transparent and flexible electronic material. Nature Nanotechnology, v. 3, p. 270-274, 2008. EL-MAGHLANY, W., HANAFY, A. A., HASSAN, A. A., & EL- MAGID, M. A. (2016). Experimental study of Cu-water nanofluid heat transfer and pressure drop ina horizontal double-tube heat exchanger. Experimental Thermal and Fluid Science, 78(May), 100–111. ESFAHANI, M. R.; LANGURI, E. M. Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. International Journal of Experimental Thermal and Fluid Science, v. 83, p. 100-106, 2017. ETTEFAGHI, E.; GHOBADIAN, B.; RASHIDI, A.; NAJAFI, G.; KHOSHTAGHAZA, M. H.; POURHASHEM, S. Preparation and investigation of the heat transfer properties of a novel nanofluid based on grapheme quantum dots. Energy Conversion and Management, v. 153, p. 215-223, 2017 FENG, H., Zhong, W., Wu, Y., Tong, S. Thermodynamic performance analysis and algorithm model of multipressure heat recovery steam generators (HRSG) based on heat exchangers layout. Energy Conversion and Management, 81; 2014. FERREIRA, J. M. G. A. ; MICHALEWICZ, J.S. . Análise experimental e simulação CFD de trocadores de calor tubo duplo com fita torcida utilizando nanofluido de grafeno.XVI Congresso de Iniciação Científica do Ifpe, 2021, Recife-PE. XVI CONIC.Recife-PE, 2021. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of heat transfer. 7th edition.USA. Cengage Learning, 2011. GEIM, A. K.; NOVOSELOV, K. S.The rise of graphene. Nature Materials, v.6, P. 183-191, 2007. GNIELINSKI, V. New equations for heat and mass transfer in the turbulent flow inpipes and channels. NASA STI/recon technical report A, v. 41, n. 1, p. 8-16, 1975. GHOZATLOO, A.; NIASAR-SHARIATY, M.; RASHIDI, A. M. Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. International communications in Heat and Mass Transfer, v. 42, p. 89-94, 2013. HAJJAR, Z.; RASHIDI, A. M.; GHOZATLOO, A. Enhanced thermal conductivities ofgrapheme oxide nanofluids. International Communications in Heat and Mass Transfer, v. 57, p. 128-131, 2014. HAQUE, A. K. M. M.; KIM, S.; KIM, J.; NOH, J.; HUH, S.; CHOI, B.; CHUNG, H.; JEONG, H. Surface modification of Graphene Nanoparticles by Acid Treatment and Grinding Process. Journal of Nanoscience and Nonotechnology, v. 18, p. 645-650, 2018. HAN, D., HE, W. F., & ASIF, F. Z. (2017). Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia, 142, 2547–2553. HAN, H., He, Y., Tao, W., Li, Y. A parameter study of tube bundle heat exchangersfor fouling rate reduction. International Journal of Heat and Mass Transfer, 72; 2014. HUMMERS, W. S.; OFFEMAN, JR. R. E. Preparation of Graphitic Oxide. National Lead Company, p. 1339, 1957. INCROPERA, Frank P.; DEWITT, P. David; BERGMAN, L. Theodore; LAVINE, S. Adrienne. Fundamentos de transferência de calor e de massa. 6o Edição, Rio de Janeiro: Ltc, 2008. IZADKHAH, M. S.; ERFRA-MIYA, H.; AREF, A. H.; ABDI, A.; CFD simulation of heat transfer in nanofluids containing Graphene. I National Conference of New Technologies in Chemical and Petrochemical, Tehran, 2014. JEONG, H. Surface modification of Graphene Nanoparticles by Acid Treatment and Grinding Process. Journal of Nanoscience and Nonotechnology, v. 18, p. 645-650, 2018. KHEDKAR, R. S.; SONAWANE, S. S.; WASEWAR, K. L.; Heat transfer study onconcentric tube heat exchanger using TiO2-water-based nanofluid.International Communications in Heat and Mass Transfer, v. 57, p. 163- 169, 2014. KUMAR, V.; TIWARI, A. K.; GHOSH, S. K. Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy, v. 114, p. 1107-1119, 2016. LIMA, A. A. S.; OCHOA, A. A. V.; COSTA, J. A. P. DA; HENRÍQUEZ, J. R.; CDF simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. International Journal of Refrigeration, v. 98, p. 514-525, 2019. MALISKA, C. R., 2004, “Transferência de Calor e Mecânica dos Fluidos Computacional”, Rio de Janeiro: LTC – Livros Técnicos e Científicos. MICHALEWICZ, J.S.; FERREIRA, J. M. G. A. Comparação entre diversas concentrações do nanofluido de grafeno em trocadores de calor tipo tubo duplo usando análise experimental e CFD. XV Congresso de Iniciação Científica do Ifpe, 2020, Recife. MICHALEWICZ, J.S.; FERREIRA, J. M. G. A. Análise experimental de trocadores de calor tubo duplo utilizando nanofluido. II JIPEEIS- Jornada Internacional de Pesquisa,Ensino, Extensão, Inovação e Sustentabilidade, 2019, Recife-PE. v. 1. MICHALEWICZ, J.S. ; FERREIRA, J. M. G. A. ; COSTA, J. A. P. ; MENEZES, F. D. ; ALVES, J. V. P. . Estudo de concentrações do nanofluido a base de grafeno em trocadores de calor do tipo tubo duplo usando análise experimental e simulação CFD.CONEM-Congresso Nacional de Engenharia Mecânica, 2022, Terezina-PI. MOHD, N. A. R. N.; DAHALAN, N. B.; NASIR, N. The evaluation of k-ε and k-ԝ turbulence models in modeling flows and performance of s-shaped diffuser. International Journal of Automotive and mechanical Engineering, v. 15, p. 5161- 5177, 2018 NOVOSELOV, K. S.; GEIM, A. K.; MOROZOV, S. V.; JIANG, D.; ZHANG, Y.; DUBONOS, S. V.; GRIGORIEVA, I. V.; FIRSOV, A. A. Electric field effect in atomic mlly thin carbon films. Science, v.306, P. 666-669, 2004. PALANISAMY, K., & KUMAR, P. C. M. (2017). Heat transfer enhancement and pressure drop analysis of a cone helical coiled tube heat exchanger using WCNT/water nanofluid. Journal of Applied Fluid Mechanics, 10(SpecialIssue),7–13. PETUKHOV, B. Heat transfer and friction in turbulent pipe flow with variable physical properties. Advances in heat transfer, v. 6, p. 503-564, 1970. PINTO, D. A. V. Condutividade térmica do grafeno suspenso em diferentes substratos. 2016. 72f. Dissertação (Mestrado em Engenharia Física), Departamento de Física da Universidade de Aveiro, Portugal, 2016. SADEGHINEZHAD, E.; MEHRALI, M.; SAIDUR, R.; MEHRALI, M.; LATIBARI, S. T.; AKHIANI, A. R.; METSELAAR, H. S. C. A comprehensive review on graphene nanfluids: Recent research, development and applications. Energy Conversion and Management, v. 111, p. 466-487, 2016. SADRI, R.; HOSSEINI, M.; KAZI, S.N.; BAGHERI, S.; ABDELRAZEK, A. H.; HMADI, G.; ZUBIR, N.; AHMAD, R.; ABIDIN, N. I. Z. A facile, bio-based, novel approach for ynthesis of covalently functionalized grapheme nanoplatelet nano- coolants toward improved thermo-physical and heat transfer properties. Journal of Colloid and Interface Science, v. 509, p.140-152, 2017. SADRI, R.; MALLAH, A.R.; HOSSEINI, M.; AHMADI, G.; KAZI, S.N.; DABBAGH, A.; YEONG, C.H.; AHMAD, R.; YAAKUP, N.A. CFD molideling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: comparison with experimental data. Journal of molecular liquids, v. 269, p. 152-159, 2018. SAJJAD, M.; KAMRAN, M. S.; SHUAKAT, R.; ZEIENELABDEEN, M. I. M.; Numerical investigation of laminar convective heat transfer of Graphene oxide/ ethylene glycol- water nanofluids in a horizontal tube. Engineering science and technology, an International Journal, v. 21, p. 727-735, 2018. SARSAM, W. S.; AMIRI, A.; KAZI, S. N.; BADARUDIN, A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Conversion and Management, v. 116, p. 101-111, 2016. SAUNDERS, E. A. D; Heat exchangers: selection, design and construction. LongmanScientific e Technical: Harlow, 1988. SEDAGHAT, F.; YOUSEFI, F. Synthesizes, characterization, measurements andmodeling thermal conductivity and viscosity of grapheme quantum dots nanofluids. Journal of molecular liquids, v. 278, p. 299-308, 2019. SEGUNDO, J. E. D. V.; VILAR, E. O. Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, v.11, n. 2, p. 54-57, 2016. SILVA, CRISTIANO VITORINO. Introdução ao Ansys CFX. 2019. 45 f. Apostila. SINGH, S.; SINGH, G.; SINGLA, A. Experimental Studies on Heat Transfer Performance of Double Pipe Heat Exchanger with using Baffles and Nanofluids. Indian Journal of Science and Technology, v. 9, p. 1-7, 2016. SOLEYMANIHA, M.; AMIRI, A.; SHANBEDI, M.; TENG, C. B.; WONGWISES, S. Water-based graphene quantum dots dispersion as a high- performance longterm stable nanofluid for two-phased closed thermosyphons. International communicationsin heat and Mass Transfer, v. 95, p. 147-154, 2018. TQ TEC QUIMPMENTEL. Bancada de Trocadores de calor – Guia do usuário.2009. WALLACE, P. R. The bang theory of graphite. Physical Review Journals Archive, v.71, p.622-634, 1947. WANG, ZHE; ZAN WU; FENGHUI HAN; LARS WADSÖ; BENGT SUNDÉN. Experimental comparative evaluation of a graphene nanofluid coolant in miniature plate heat exchanger. International Journal of Thermal Sciences, v. 130, p. 148-156, 2018a. WU, X. P., Yang, L. J., Du, X. Z., Yang, Y. P. Flow and heat transfer characteristicsof indirect dry cooling system with horizontal heat exchanger A-frames at ambient winds. International Journal of Thermal Sciences, 79; 2014. YANG, J., Maa, L., Bock, J., Jacobi, A. M., Liu, W. A comparison of four numerical modeling approaches for enhanced shell-and-tube heat exchangers with experimental validation. Applied Thermal Engineering, 65; 2014. YANG, L.; YEE, W. A.; PHUA, S. L.; KONG, J.; DING, H.; CHEAH, J. W.; LU, X. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. RSC Advances, v. 6, p. 2208-2210, 2012. YARMAND, H. GHAREHKHANI, S.; SHIRAZI, S. F. S.; GOODARZI, M.; AMARI, A.; SARSAM, S. W.; ALEHASHEM, M. S.; DAHARI, M.; KAZI, S. N. Study of synthesis and thermos-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. International Communications in Heat and Mass Transfer, v. 77, p. 15-21, 2016.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEngenharia mecânicapt_BR
dc.subjectGrafenopt_BR
dc.subjectTroca térmicapt_BR
dc.subjectNanofluídopt_BR
dc.titleAnálise numérica de trocador de calor do tipo tubo duplo utilizando nanofluído a base de grafenopt_BR
dc.typeTCCpt_BR
dc.creator.Lattesttp://lattes.cnpq.br/3260333289188345pt_BR
dc.contributor.advisor1Michalewicz, Jacek Stanislaw
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4878832540144866pt_BR
dc.contributor.advisor-co1Costa, José Ângelo Peixoto da
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8239712503695923pt_BR
dc.contributor.referee1Lira Júnior, José Claudino de
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8330992492108309pt_BR
dc.publisher.departmentRecifept_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqENGENHARIAS::ENGENHARIA MECANICA::ENGENHARIA TERMICApt_BR
dc.description.resumoTrocadores de calor são dispositivos que permitem a troca térmica entre dois ou mais fluidos que estejam separados por alguma interface sólida e que se encontram em temperaturas distintas. Presente em muitas indústrias esse dispositivo, faz essa troca de energia acontecer de forma indireta, através de elementos que separam os fluidos, ou diretamente, em um processo de mistura. Os arranjos para acontecer o escoamento desses fluidos podem ser em fluxo paralelo, ou em contra fluxo. Os fluidos de transferência de calor desempenham papel vital em muitas indústrias e processos, incluindo geração de energia, processos químicos, processos de aquecimento e também de resfriamento, transporte, microeletrônica e outras diversas áreas. Entre os principais fluidos encontramos a água, minerais óleos e etileno glicol. Porém, os fluidos comuns de transferência de calor têm um baixo rendimento energético quando comparados aos materiais sólidos, então, para atender as necessidades da obra, foi produzido um novo fluido de troca térmica, o nanofluido, que nada mais é que um fluido comum, com nanopartículas sólidas dissolvidas em sua composição. Partículas sólidas essas que suprem a deficiência energética do fluido comum. Levando em consideração sua importância para a indústria como um todo, por meio de um estudo numérico computacional (CFD), o presente trabalho tem por objetivo investigar a eficácia do uso do nanofluido à base de grafeno, qual parâmetro do nanofluido interfere e ajuda no aumento do desempenho da eficiência da troca térmica em trocadores de calor do tipo tubo duplo.pt_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples