dc.relation | ABBASIAN, A. A.A.; AMANI, J. Experimental study on the effect of TiO2–
waternanofluid on heat transfer and pressure drop. Experimental Thermal
and Fluid Science, v. 42, p. 107– 115, 2012.
AMEEL, B., Degroote, J., T’Joen, C., Huisseune, H., Schampheleire, S.,
Vierendeels, J., Paepe, M. Accounting for the effect of the heat exchanger
length in the performance evaluation of compact fin and tube heat
exchangers. Applied Thermal Engineering, 65; 2014.
ARAÚJO, E. C. C. Trocadores de calor. Série Apontamentos, EdUFSCAR:
SãoCarlos, 2002.
AKYÜREK, E. F.; GELIŞ, K.; ŞAHIN, B.; MANAY, E. Experimental Analysis
for HeatTransfer of nanofluid with Wire Coil Turbulators in a Concentric
Tube Heat Exchanger. Results in Physics, v. 9, p. 376-389, 2018.
ARSHAD, A.; JABBAL, M.; YAN, Y.; REAY, D.; A Review on Graphene
based Nanofluids: Preparation, Characterization and Applications. Journal
of Molecular Liquids,v 279, p. 444-484, 2019a.
ASKARI, S.; LOTFI, R.; SEIFKORDI, A.; RASHIDI, A. M.; KOOLIVAND, H.A
novel approach for energy and water conservation in wet cooling towers by
using MWNTs and nanoporous grapheme nanofluids. Energy Conversion and
Management, v. 109, p. 10-18,2016.
BAHIRAEI, M.; SALMI, H. K.; SAFAEI, M. R. Effect of employing a new
biological nanofluid containing functionalized grapheme nanoplatelets on
thermal and hydraulic characteristics of a spiral heat exchanger. Energy
Conversionand Management, v. 180, p. 72-82, 2019a.
BAHIRAEI, M.; MAZAHERI, N.; RIZEHVANDI, A.; Application of a hybrid
nanofluid containing Graphene nanoplaletet-platinum composite power in a
triple-tube heat exchanger equipped with inserted ribs. Applied Thermal
Engineering, v. 149, p. 588- 601, 2019b.
BORDIGNON, R. Desempenho tribológico de Grafeno funcionalizado
como aditivo emóleo lubrificante de baixa viscosidade. 2018. 80f.
Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Centro de
Tecnologia, Universidade Federal deSanta Catarina,Florianópolis, Santa
Catarina, 2018.
COLEBROOK, C.F. Turbulent flow in pipes, with particular reference to the
transition between the smooth and rough pipe laws. Journal of the
Institutionof Civil Engineers, v. 11, p. 133-161, 1939.
COSTA, J. A. P. da; MICHALEWICZ, J. S.; MENEZES, F. D.; LIMA,
M. V. F.; OCHOA, A. A. V.; SILVA, J. V. C.; Simulação computacional de
trocadores de calor casco e tubo utilizando nanofluido como fluido de
trabalho. VI Congresso Argentino de Ingeniería Mecânica, Tucumán,
2018.
ÇENGEL, Y. A. Transferência de calor e massa: uma abordagem prática.
São Paulo:McGraw-Hill, 2009.
ÇENGEL, Yunus A. Transferência de calor e massa: uma abordagem
prática. 4ed. Porto Alegre: AMGH, 2012.
DUTRA, C. J. C., PRIMO, A. R., MAGNANI, F. S., HENRÍQUEZ, G. J. R.
Relatório Final do Projeto P49 – Projeto COGENCASA. Universidade
Federal de Pernambuco.UFPE. Recife 2009.
EDA, G.; FANCHINI, G.; CHHOWALLA, MANISH. Large-area ultrathin films
of reduced grapheme oxide as a transparent and flexible electronic
material. Nature Nanotechnology, v. 3, p. 270-274, 2008.
EL-MAGHLANY, W., HANAFY, A. A., HASSAN, A. A., & EL-
MAGID, M. A. (2016). Experimental study of Cu-water nanofluid heat
transfer and pressure drop ina horizontal double-tube heat exchanger.
Experimental Thermal and Fluid Science, 78(May), 100–111.
ESFAHANI, M. R.; LANGURI, E. M. Exergy analysis of a shell-and-tube
heat exchanger using graphene oxide nanofluids. International Journal of
Experimental Thermal and Fluid Science, v. 83, p. 100-106, 2017.
ETTEFAGHI, E.; GHOBADIAN, B.; RASHIDI, A.; NAJAFI, G.;
KHOSHTAGHAZA, M. H.; POURHASHEM, S. Preparation and
investigation of the heat transfer properties of a novel nanofluid based on
grapheme quantum dots. Energy Conversion and Management, v. 153,
p. 215-223, 2017
FENG, H., Zhong, W., Wu, Y., Tong, S. Thermodynamic performance
analysis and algorithm model of multipressure heat recovery steam
generators (HRSG) based on heat exchangers layout. Energy Conversion
and Management, 81; 2014.
FERREIRA, J. M. G. A. ; MICHALEWICZ, J.S. . Análise experimental e
simulação CFD de trocadores de calor tubo duplo com fita torcida utilizando
nanofluido de grafeno.XVI Congresso de Iniciação Científica do Ifpe,
2021, Recife-PE. XVI CONIC.Recife-PE, 2021.
Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of heat transfer.
7th edition.USA. Cengage Learning, 2011.
GEIM, A. K.; NOVOSELOV, K. S.The rise of graphene. Nature Materials,
v.6, P. 183-191, 2007.
GNIELINSKI, V. New equations for heat and mass transfer in the
turbulent flow inpipes and channels. NASA STI/recon technical report A,
v. 41, n. 1, p. 8-16, 1975.
GHOZATLOO, A.; NIASAR-SHARIATY, M.; RASHIDI, A. M.
Preparation of nanofluids from functionalized Graphene by new alkaline
method and study on the thermal conductivity and stability. International
communications in Heat and Mass Transfer, v. 42, p. 89-94, 2013.
HAJJAR, Z.; RASHIDI, A. M.; GHOZATLOO, A. Enhanced thermal
conductivities ofgrapheme oxide nanofluids. International
Communications in Heat and Mass Transfer, v. 57, p. 128-131, 2014.
HAQUE, A. K. M. M.; KIM, S.; KIM, J.; NOH, J.; HUH, S.; CHOI, B.; CHUNG, H.;
JEONG, H. Surface modification of Graphene Nanoparticles by Acid
Treatment and Grinding Process. Journal of Nanoscience and
Nonotechnology, v. 18, p. 645-650, 2018.
HAN, D., HE, W. F., & ASIF, F. Z. (2017). Experimental study of heat
transfer enhancement using nanofluid in double tube heat exchanger.
Energy Procedia, 142, 2547–2553.
HAN, H., He, Y., Tao, W., Li, Y. A parameter study of tube bundle heat
exchangersfor fouling rate reduction. International Journal of Heat and Mass
Transfer, 72; 2014.
HUMMERS, W. S.; OFFEMAN, JR. R. E. Preparation of Graphitic Oxide.
National Lead Company, p. 1339, 1957.
INCROPERA, Frank P.; DEWITT, P. David; BERGMAN, L. Theodore;
LAVINE, S. Adrienne. Fundamentos de transferência de calor e de massa.
6o Edição, Rio de Janeiro: Ltc, 2008.
IZADKHAH, M. S.; ERFRA-MIYA, H.; AREF, A. H.; ABDI, A.; CFD simulation of
heat transfer in nanofluids containing Graphene. I National Conference of New
Technologies in Chemical and Petrochemical, Tehran, 2014.
JEONG, H. Surface modification of Graphene Nanoparticles by Acid
Treatment and Grinding Process. Journal of Nanoscience and
Nonotechnology, v. 18, p. 645-650, 2018.
KHEDKAR, R. S.; SONAWANE, S. S.; WASEWAR, K. L.; Heat transfer
study onconcentric tube heat exchanger using TiO2-water-based nanofluid.International Communications in Heat and Mass Transfer, v. 57, p. 163-
169, 2014.
KUMAR, V.; TIWARI, A. K.; GHOSH, S. K. Effect of variable spacing on
performance of plate heat exchanger using nanofluids. Energy, v. 114, p.
1107-1119, 2016.
LIMA, A. A. S.; OCHOA, A. A. V.; COSTA, J. A. P. DA; HENRÍQUEZ,
J. R.; CDF simulation of heat and mass transfer in an absorber that uses
the pair ammonia/water as a working fluid. International Journal of
Refrigeration, v. 98, p. 514-525, 2019.
MALISKA, C. R., 2004, “Transferência de Calor e Mecânica
dos Fluidos Computacional”, Rio de Janeiro: LTC – Livros Técnicos e
Científicos.
MICHALEWICZ, J.S.; FERREIRA, J. M. G. A. Comparação entre diversas
concentrações do nanofluido de grafeno em trocadores de calor tipo tubo
duplo usando análise experimental e CFD. XV Congresso de Iniciação
Científica do Ifpe, 2020, Recife.
MICHALEWICZ, J.S.; FERREIRA, J. M. G. A. Análise experimental de
trocadores de calor tubo duplo utilizando nanofluido. II JIPEEIS- Jornada
Internacional de Pesquisa,Ensino, Extensão, Inovação e
Sustentabilidade, 2019, Recife-PE. v. 1.
MICHALEWICZ, J.S. ; FERREIRA, J. M. G. A. ; COSTA, J. A. P. ;
MENEZES, F. D. ; ALVES, J. V. P. . Estudo de concentrações do
nanofluido a base de grafeno em trocadores de calor do tipo tubo duplo
usando análise experimental e simulação CFD.CONEM-Congresso
Nacional de Engenharia Mecânica, 2022, Terezina-PI.
MOHD, N. A. R. N.; DAHALAN, N. B.; NASIR, N. The evaluation of k-ε
and k-ԝ turbulence models in modeling flows and performance of s-shaped
diffuser. International Journal of Automotive and mechanical
Engineering, v. 15, p. 5161- 5177, 2018
NOVOSELOV, K. S.; GEIM, A. K.; MOROZOV, S. V.; JIANG, D.;
ZHANG, Y.; DUBONOS, S. V.; GRIGORIEVA, I. V.; FIRSOV, A. A.
Electric field effect in atomic mlly thin carbon films. Science, v.306, P.
666-669, 2004.
PALANISAMY, K., & KUMAR, P. C. M. (2017). Heat transfer
enhancement and pressure drop analysis of a cone helical coiled tube heat
exchanger using WCNT/water nanofluid. Journal of Applied Fluid
Mechanics, 10(SpecialIssue),7–13.
PETUKHOV, B. Heat transfer and friction in turbulent pipe flow with variable
physical properties. Advances in heat transfer, v. 6, p. 503-564, 1970.
PINTO, D. A. V. Condutividade térmica do grafeno suspenso em
diferentes substratos. 2016. 72f. Dissertação (Mestrado em Engenharia
Física), Departamento de Física da Universidade de Aveiro, Portugal, 2016.
SADEGHINEZHAD, E.; MEHRALI, M.; SAIDUR, R.; MEHRALI, M.; LATIBARI,
S. T.; AKHIANI, A. R.; METSELAAR, H. S. C. A comprehensive review on
graphene nanfluids: Recent research, development and applications. Energy
Conversion and Management, v. 111, p. 466-487, 2016.
SADRI, R.; HOSSEINI, M.; KAZI, S.N.; BAGHERI, S.; ABDELRAZEK, A. H.;
HMADI, G.; ZUBIR, N.; AHMAD, R.; ABIDIN, N. I. Z. A facile, bio-based, novel
approach for ynthesis of covalently functionalized grapheme nanoplatelet nano-
coolants toward improved thermo-physical and heat transfer properties. Journal
of Colloid and Interface Science, v. 509, p.140-152, 2017.
SADRI, R.; MALLAH, A.R.; HOSSEINI, M.; AHMADI, G.; KAZI, S.N.;
DABBAGH, A.; YEONG, C.H.; AHMAD, R.; YAAKUP, N.A. CFD molideling of
turbulent convection heat transfer of nanofluids containing green functionalized
graphene nanoplatelets flowing in a horizontal tube: comparison with
experimental data. Journal of molecular liquids, v. 269, p. 152-159, 2018.
SAJJAD, M.; KAMRAN, M. S.; SHUAKAT, R.; ZEIENELABDEEN, M. I. M.;
Numerical investigation of laminar convective heat transfer of Graphene oxide/
ethylene glycol- water nanofluids in a horizontal tube. Engineering science
and technology, an International Journal, v. 21, p. 727-735, 2018.
SARSAM, W. S.; AMIRI, A.; KAZI, S. N.; BADARUDIN, A. Stability and
thermophysical properties of non-covalently functionalized graphene
nanoplatelets nanofluids. Energy Conversion and Management, v. 116,
p. 101-111, 2016.
SAUNDERS, E. A. D; Heat exchangers: selection, design and
construction. LongmanScientific e Technical: Harlow, 1988.
SEDAGHAT, F.; YOUSEFI, F. Synthesizes, characterization,
measurements andmodeling thermal conductivity and viscosity of
grapheme quantum dots nanofluids. Journal of molecular liquids, v. 278,
p. 299-308, 2019.
SEGUNDO, J. E. D. V.; VILAR, E. O. Grafeno: Uma revisão sobre
propriedades, mecanismos de produção e potenciais aplicações em
sistemas energéticos. Revista Eletrônica de Materiais e Processos, v.11,
n. 2, p. 54-57, 2016.
SILVA, CRISTIANO VITORINO. Introdução ao Ansys CFX. 2019. 45 f.
Apostila.
SINGH, S.; SINGH, G.; SINGLA, A. Experimental Studies on Heat Transfer Performance of Double Pipe Heat Exchanger with using Baffles and
Nanofluids. Indian Journal of Science and Technology, v. 9, p. 1-7,
2016.
SOLEYMANIHA, M.; AMIRI, A.; SHANBEDI, M.; TENG, C. B.;
WONGWISES, S. Water-based graphene quantum dots dispersion as a high-
performance longterm stable nanofluid for two-phased closed thermosyphons.
International communicationsin heat and Mass Transfer, v. 95, p. 147-154,
2018.
TQ TEC QUIMPMENTEL. Bancada de Trocadores de calor – Guia do
usuário.2009.
WALLACE, P. R. The bang theory of graphite. Physical Review Journals
Archive, v.71, p.622-634, 1947.
WANG, ZHE; ZAN WU; FENGHUI HAN; LARS WADSÖ; BENGT
SUNDÉN. Experimental comparative evaluation of a graphene nanofluid
coolant in miniature plate heat exchanger. International Journal of Thermal
Sciences, v. 130, p. 148-156, 2018a.
WU, X. P., Yang, L. J., Du, X. Z., Yang, Y. P. Flow and heat transfer
characteristicsof indirect dry cooling system with horizontal heat exchanger
A-frames at ambient winds. International Journal of Thermal Sciences,
79; 2014.
YANG, J., Maa, L., Bock, J., Jacobi, A. M., Liu, W. A comparison of four
numerical modeling approaches for enhanced shell-and-tube heat
exchangers with experimental validation. Applied Thermal Engineering,
65; 2014.
YANG, L.; YEE, W. A.; PHUA, S. L.; KONG, J.; DING, H.; CHEAH, J. W.; LU,
X. A high throughput method for preparation of highly conductive functionalized
graphene and conductive polymer nanocomposites. RSC Advances, v. 6, p.
2208-2210, 2012.
YARMAND, H. GHAREHKHANI, S.; SHIRAZI, S. F. S.; GOODARZI, M.;
AMARI, A.; SARSAM, S. W.; ALEHASHEM, M. S.; DAHARI, M.; KAZI,
S. N. Study of synthesis and thermos-physical properties of graphene
nanoplatelet/platinum hybrid nanofluid. International Communications in
Heat and Mass Transfer, v. 77, p. 15-21, 2016. | pt_BR |