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RESUMO

A doenga de Chagas ¢ considerada pela Organizacio Mundial da Saude uma doenca
negligenciada e um grave problema de saude publica, com aproximadamente 7 milhdes de
pessoas atualmente infectadas pelo Trypanosoma cruzi no mundo. O objetivo deste trabalho foi
desenvolver um aplicativo para a plataforma Android que utiliza um modelo de aprendizado de
maquina para ajudar a identificar imagens de triatomineos que sao vetores da doenga de Chagas.
O modelo utilizado foi baseado no EfficientNetV2, uma arquitetura de rede neural
convolucional previamente treinada para reconhecimento genérico de imagens, aprimorada
com imagens de vetores nativos de Pernambuco e de insetos semelhantes que ndo sdo
transmissores. O modelo criado foi avaliado usando um conjunto de imagens de teste distintas
das usadas em treinamento e validagdo, apresentando uma acuracia de 91,89%. Esses resultados
indicam que o modelo EfficientNetV2 adaptado conseguiu generalizar bem para novos dados.
O aplicativo, denominado TriatoDetect, foi desenvolvido para ter uma interface que facilitasse
a identificacdo de triatomineos por meio da camera do celular ou imagens armazenadas no

dispositivo.

Palavras-chave: Doenca de Chagas; Triatominae; Inteligéncia Artificial; Aprendizado de

Maquina.



ABSTRACT

Chagas disease is considered by the World Health Organization as a neglected disease and a
serious public health problem, with approximately 7 million people currently infected by
Trypanosoma cruzi worldwide. The objective of this work was to develop an application for
the Android platform that uses a machine learning model to help identify images of triatomines
that are vectors of the Chagas disease. The model used was based on EfficientNetV2, a
convolutional neural network architecture pre-trained for generic image recognition, which was
enhanced with images of native vectors from Pernambuco and similar non-vector insects. The
developed model was evaluated using a test dataset distinct from those used in training and
validation, achieving an accuracy of 91.89%. These results indicate that the adapted
EfficientNetV2 model was able to generalize well to new data. The application, named
TriatoDetect, was designed with an interface to facilitate the identification of triatomines

through the phone's camera or images stored on the device.

Keywords: Chagas Disease; Triatominae; Artificial Intelligence; Machine Learning.
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1 INTRODUCAO

A doenca de Chagas ¢ considerada pela Organizacdo Mundial de Saude (OMS) uma
doenca negligenciada, apresentando-se como um grave problema de saude publica, visto que
aproximadamente 7 milhdes de pessoas estdo infectadas pelo Trypanossoma cruzi (T. cruzi),
no mundo (WHO, 2018). Além disso, mantém o padrao epidemiologico de endemicidade em
21 paises da regido da América Latina e nos Estados Unidos da América, com
aproximadamente 70 milhdes de pessoas sob risco de exposi¢do a infec¢ao por 7. cruzi (WHO,

2022).

No Brasil, atualmente, estima-se que cerca de 1,4 a 3,2 milhdes de pessoas estejam
infectadas pelo 7. cruzi, e 21,8 milhdes estdo sob risco de infec¢ao (Souza et al., 2023). Entre
os anos de 2010 e 2020 foram registrados 49.574 6bitos, dos quais 11.210 ocorreram na regiao
Nordeste, sendo 1.299 em Pernambuco (Brasil, 2022). O surto mais recente da doenca de chagas
no Estado, ocorreu em 2019 no municipio de Ibimirim-PE, ao qual supostamente foi associado
a ingestao de alimentos contaminados, resultando em aproximadamente 30 pessoas infectadas

(Jansen et al., 2020).

O agente etiologico da doenca de Chagas € o protozodrio 7. cruzi, sendo o triatomineo,
inseto hematdfago, popularmente conhecido como barbeiro, o principal vetor dessa doenga.
Esses vetores estdo amplamente distribuidos pelo territorio nacional, com registros de 66
espécies no Brasil (Silva, 2022) e 14 no estado de Pernambuco, destacando como principais de
interesse a saude publica as espécies Panstrongylus megistus, Panstrongylus lutzi, Triatoma
brasiliensis e Triatoma pseudomaculata (Silva et al., 2021; Medeiros et al., 2023). Assim
sendo, Pernambuco ¢ considerado uma regido de risco para transmissao vetorial, visto que ha

registros de triatomineos em mais de 90% dos municipios pernambucanos (Silva et al., 2012).

Entretanto, para identificagdo e diferenciacdo das diferentes espécies de triatomineos de
importancia epidemioldgica, além de outros insetos semelhantes, faz-se necessario
conhecimento acerca da entomologia, visto que a familia Reduviidae ¢ constituida por 25
subfamilias, entre elas a subfamilia Triatominae, as quais as espécies vetores da doenga de

Chagas estdo alocadas (Menezes, 2018).

Por essa razdo, estas subfamilias apresentam caracteristicas morfoldgicas semelhantes

entre si que complicam o processo de identificacdo dos triatomineos, podendo levar a erros,



especialmente entre a populacdo em geral e entre profissionais que atuam nessa area, como 0s

Agentes de Endemias, que podem nao ter conhecimento suficiente das diferengas morfolédgicas.

Contudo, ressalta-se a importancia da educagao e da participacao popular na notificacao
de triatomineos, seja por meio de vigilancia ativa ou outras formas de engajamento, visando
contribuir para que as geréncias de satide possam implementar acdes de controle nas areas de
maior vulnerabilidade e risco de maneira mais eficiente, buscando assim reduzir a incidéncia

da doenga de Chagas (Silva et al., 2022).

Perante o exposto, buscando inserir a populagao no processo de identificagao dos insetos
transmissores da doenga de Chagas e garantir a notificagdo aos setores responsaveis em tempo
real, sugere-se o desenvolvimento de um aplicativo modvel para o reconhecimento dos
triatomineos, além de diferenciar dos insetos que sdo morfologicamente semelhantes. Podendo

assim, esse aplicativo ser utilizado pelos profissionais de saude e pela populagdo.

1.1 Objetivos
1.1.1 Objetivo Geral

O objetivo deste trabalho foi desenvolver um aplicativo mdvel para a plataforma
Android capaz de identificar automaticamente e registrar geograficamente, por meio de técnicas
de Deep Learning e georreferenciamento, imagens de triatomineos transmissores da doenga de
Chagas, distinguindo-os de insetos semelhantes ndo vetores, dessa forma auxiliando a
populagdo em geral na prevengao da doenga e as autoridades sanitarias no mapeamento de areas

criticas.

1.1.2  Objetivos Especificos

e Configurar e treinar o modelo de Deep Learning para deteccao dos triatomineos nas
imagens;
e Desenvolver um aplicativo mdvel que usa o modelo desenvolvido para identificar os

triatomineos;



2  REFERENCIAL TEORICO

A doenga de Chagas, também conhecida como tripanossomiase americana, ¢ uma
enfermidade tropical negligenciada causada pelo protozoario Trypanosoma cruzi. Ela ¢
transmitida principalmente por insetos hematofagos conhecidos popularmente como
barbeiros, pertencentes a subfamilia Triatominae. Os barbeiros contaminados eliminam o 7.
cruzi em suas fezes ao picar o hospedeiro, permitindo que o protozoario penetre no organismo
humano por meio de feridas ou mucosas (WHO, 2022).

Figura 1 - Imagem de Triatoma brasiliensis, triatomineo com ampla distribui¢ao em
Pernambuco, disponibilizada pelo Laboratorio Nacional e Internacional de Referéncia em

Taxonomia de Triatomineos, Instituto Oswaldo Cruz — Fundagao Oswaldo Cruz (Fiocruz),
Rio de Janeiro.

Fonte: Fiocruz, 2023.

A identificagdo de triatomineos ¢ desafiadora devido a diversidade de espécies e a sua
distribuicdo irregular em diferentes habitats. Estudos em Uberlandia — Minas Gerais, mostraram
que espécies como Panstrongylus megistus estdo presentes tanto em ambientes silvestres
quanto domiciliares, o que indica um alto risco de infestacdo. Esses resultados destacam a
necessidade de abordagens integradas, que combinem andlises morfologicas detalhadas e
monitoramento continuo, para identificar corretamente os vetores da doenga de Chagas e adotar

medidas de controle eficazes (Mendes & Lima, 2008).

Ja no estado de Pernambuco, o estudo de Silva et al. (2015) evidenciou que a espécie 7.
brasiliensis foi a mais prevalente nas cinco regides do estado, com 37,3% das amostras, seguida
de Triatoma pseudomaculata com 36,1% das amostras de um total de 2.443 insetos coletados.
Além dessas, a espécie Panstrongylus megistus foi encontrada em todo o estado em regides
descontinuas, variando desde a regido do Agreste ao Sertdo, onde o municipio de Santa Cruz

do Capibaribe se destacou com 19 (0,57%) registros da espécie. A espécie Panstrongylus lutzi,
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com 93 (2,7%) ocorréncias, teve presenca marcante no municipio de Caruaru, também

localizado no Agreste.

No livro Vetores da doenga de Chagas no Brasil, Galvao et al. (2014), apresenta os
principais triatomineos em cada estado brasileiro e as principais caracteristicas morfologicas,
destacando as seguintes espécies de vetores da doenga de Chagas em Pernambuco:
Panstrongylus lutzi, Panstrongylus megistus, Psammolestes tertius, Rhodnius. nasutus,
Rhodnius  neglectus, Triatoma brasiliensis, Triatoma pseudomaculata, Triatoma
melanocephala, Triatoma petrocchiae, Triatoma rubrofasciata, Triatoma sordida e Triatoma

tibiamaculata.

As agdes humanas de expansao e interferéncia nos habitats desses vetores, bem como
as intervencdes para controle de alguns dos principais vetores da doenca de Chagas (como as
acdes de erradicacdo domiciliar do Triatoma infestans) acarretam na mudanca ou substitui¢ao
por outros vetores com potencial para domiciliar-se. Como identificado por Silva et al. (2019),
as espécies Triatoma brasiliensis e Triatoma pseudomaculata passaram a se destacar como
principais vetores da doenca de Chagas no estado, sendo considerados triatomineos nativos do
Nordeste que infestam tanto o intradomicilio quanto o peridomicilio. Outra espécie que vem se
destacando nas coletas de campo ¢ a Panstrongylus lutzi, que apresenta proporcionalmente uma

taxa de infeccdo natural superior as demais espécies encontradas.

No estudo de Silva et al. (2021), foram coletados no periodo de 2012 — 2017, 9.738
espécimes de triatomineos pertencentes a seis espéciesEntre eles, destacaram-se: Triatoma
brasiliensis, com 8.251 exemplares, Triatoma pseudomaculata, com 1.323 exemplares,
Panstrongylus lutzi, com 100 exemplares, Triatoma sordida, com 56 exemplares,
Panstrongylus megistus, com 7 exemplares e Rhodnius neglectus, com 1 exemplar. As espécies
P. lutzi, T. brasiliensis e T. pseudomaculata foram encontradas em todos os municipios do
Sertdo de Sao Francisco. A taxa de infec¢do para flagelados morfologicamente semelhantes a
T. cruzi nos triatomineos examinados foi de 2%. Das seis espécies coletadas, quatro foram
encontradas positivas: P. [lutzi, T. brasiliensis, T. pseudomaculata ¢ T. sordida (Silva et al.,
2021). Corroborando Silva et al. (2021), o trabalho de Medeiros et al. (2023) demonstrou que
as espécies de triatomineos 7. brasiliensis, T. pseudomaculata e P. lutzi estavam amplamente
distribuidas no estado de Pernambuco se comparado com outras espécies. Além disso, as

espécies P. lutzi e P. megistus apresentaram maior taxa de infectividade com provavel 7. cruzi.
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Ademais, dentre os principais desafios para controle desses vetores da doenca de
Chagas, temos a presenca de insetos semelhantes morfologicamente aos triatomineos, como
demonstrado no estudo de Menezes (2018). Tem-se como exemplo de insetos semelhantes
aqueles da subfamilia Ectrichodiinae, que inclui hemipteros e entomofagos, que se alimentam
da linfa de outros insetos, sendo predadores e ndo apresentando habitos hematofagos, e por essa
razao, ndo representam uma ameaga a saude humana. No entanto, devido a semelhangas
morfologicas, podem ser confundidos com triatomineos pelo publico leigo, como apresentado
na Figura 2, onde ¢ perceptivel as semelhangas entre o Triatoma pseudomaculata, inseto
transmissor do Trypanosoma cruzi, com o inseto da familia Reduviidae e subfamilia
Ectrichodiina, o Pothea jaguaris, um inseto ndo transmissor. Da mesma forma, algumas
familias de Hemiptera fitéfagos, como a Coreidae, que se alimentam da seiva das plantas,
também sdo frequentemente confundidas com triatomineos devido a sua aparéncia similar
(Menezes, 2018).

Figura 2 - Exemplo de inseto morfologicamente semelhante ao Triatomineo. A esquerda tem-

se o Triatoma pseudomaculata, inseto transmissor do 7. cruzi; a direita, o Pothea jaguaris,
inseto ndo transmissor.

Fonte: BioDiversity4All.org (2024)

Dado o desafio de identificar corretamente os transmissores da doenga de Chagas,
Parsons et al. (2020) propds o uso de técnicas de visdo computacional para realizar a
identificacdo automatica dos triatomineos. Esse trabalho utilizou a analise de componentes
principais (PCA) para extragao de caracteristicas e aplicou as técnicas Support Vector Machine
(SVM) ¢ Random Forest (RF) na fase de classificagdo. O método PCA-SVM obteve uma
acuracia de 87,62% para 410 imagens de 12 espécies mexicanas e 75,26% para 1.620 imagens
de 39 espécies brasileiras. J& o0 método PCA-RF alcancou 100% de precisdo para ambas as

espécies. Este resultado, no entanto, indica um possivel overfitting do modelo ao conjunto de
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dados utilizado, sugerindo baixa capacidade de generaliza¢do do modelo para uso em cendrios
reais. Esse aspecto refor¢a a escolha por arquiteturas modernas de Deep Learning, que
apresentam maior robustez para lidar com variabilidade de imagens em ambientes nao

controlados.
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3 METODOLOGIA E DESENVOLVIMENTO
3.1 Desenvolvimento do Modelo
3.1.1 Selecdo dos Conjuntos de Imagens

Apos a identificagdo dos triatomineos de interesse epidemiologico em Pernambuco
(Capitulo 2), foi realizada a busca por imagens dos insetos para treinamento e teste do modelo.
As imagens dos insetos transmissores foram obtidas primeiramente do conjunto de dados
utilizado por Gurgel-Gongalves et al. (2017) — trabalho que faz a classificagdo de vetores da
doenca de Chagas no México e no Brasil, com 12 espécies mexicanas e 38 brasileiras. Esse
trabalho envolveu a automacdo completa do processamento de imagens antes da andlise,
transformando-as em um conjunto de marcadores e as distancias entre eles, e, em seguida,
realizando a analise utilizando classificadores estatisticos tradicionais, como analise
discriminante linear e redes neurais artificiais. Optou-se por essas imagens por sua
disponibilidade gratuita, alta qualidade e uniformidade. Também foram utilizadas fotos da
plataforma BioDiversity4all' (associagdo sem fins lucrativos que disponibiliza registros de
fauna validados por curadores). Essa complementacdao foi necessaria porque as imagens de
Gurgel-Gongalves et al. (2017) apresentavam caracteristicas visuais muito semelhantes entre
si. Em relagdo as imagens dos insetos ndo transmissores que podem ser confundidos com os
insetos transmissores da familia Triatoma, foram obtidas exclusivamente da plataforma
BioDiversity4all, devido a dificuldade de encontrar uma base de dados etimologica dessas
familias de insetos. Por fim, a maioria das imagens dos insetos transmissores que compds a

base de treinamento foi obtida dessa mesma plataforma.

Essa diversificagdo nas fontes de imagens visou a melhoria da qualidade do modelo de
identificacdo de imagens, tornando-o mais robusto na distin¢do entre diferentes espécies de
insetos transmissores € ndo transmissores. Como as imagens da BioDiversity4all foram
registradas por cidadaos em condigdes reais de captura (com variagdes de iluminagdo, angulos
e dispositivos méveis), elas se aproximam do cendrio pratico de uso do aplicativo, onde os

usuarios fotografardo insetos em ambientes ndo controlados.

Por fim, para minimizar a ocorréncia de falsos positivos, foram incorporadas imagens
do repositorio COCO?, um extenso conjunto de dados utilizado para tarefas de detecgdo,

segmentacao e legendagem de objetos. Esse conjunto de imagens foi utilizado para a criagdo

! biodiversity4all.org
2 cocodataset.org
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de uma terceira classe destinada a deteccdo nao identificado, que serd acionada quando o
sistema ndo conseguir determinar se o inseto pertence a categoria de transmissor ou nao
transmissor. A adicdo de uma classe nao identificado segue a abordagem discutida por
Nagahama et al. (2023), onde o uso desta técnica se mostrou eficaz para lidar com a classe
desconhecida, ajudando a melhorar a robustez e a precisdo dos modelos de classificagdo ao
prever de forma confidvel quando um objeto ou imagem ndo se enquadra nas classes de
interesse. Com isso, ha uma reducdo de falsos positivos e contribui para um sistema de

identificacdo mais confiavel (Nagahama et al., 2023).

3.1.2 Tratamento das Imagens
3.1.2.1 Balanceamento dos Dados

Foi implementado um procedimento de amostragem aleatoria, conhecido como Random
Undersampling, que ¢ uma abordagem utilizada para equilibrar a distribuicdo do conjunto de
dados em cada classe, excluindo aleatoriamente os exemplos da classe majoritaria (Chaipanha
& Kaewwichian, 2022). Esse procedimento foi realizado objetivando mitigar o desequilibrio
na distribui¢do original de imagens entre as diferentes espécies, além de reduzir o problema de

viés da classificagao.

3.1.2.2 Aumentando os Dados

Ao utilizar a técnica de balanceamento Undersampling, a base de dados ficou reduzida,
resultando em 450 imagens distribuidas igualmente entre trés classes: 150 imagens de “Insetos
transmissores”, 150 de “Insetos ndo transmissores” e 150 de “Nao identificado”. Como se trata
de um problema de classificacdo multiclasse, essa redugdo poderia comprometer a capacidade
de generalizacdo do modelo. Para contornar essa situagdo, aplicou-se a técnica de Data
Augmentation com o objetivo de ampliar a quantidade e a diversidade das imagens disponiveis
para cada classe e, assim, mitigar o risco de overfitting. De acordo com Chollet (2018), o
overfitting ocorre quando o modelo se ajusta de forma muito especifica aos dados de
treinamento e perde a capacidade de generalizar para novos exemplos. Portanto, ao aumentar a
base de dados e diversificar os exemplos em todas as classes, buscou-se reduzir esse problema
e melhorar o desempenho da classificag@o. Por este motivo, ao treinar o modelo, foi criada uma
funcio para aplicar camadas de augmentacdo da biblioteca TensorFlow/Keras® para gerar novas

imagens a partir das imagens existentes, aumentando a diversidade da base de dados e ajudando

3 tensorflow.org
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a reduzir o problema de overfitting. As imagens geradas possuem alteracdes aleatorias em suas
propriedades, como rotacdo, zoom, brilho e etc. A Tabela 1 apresenta as propriedades que
foram alteradas.

Tabela 1 - Alteragdes aplicadas as imagens para o aumento de dados usando
TensorFlow/keras. Recife, 2024.

Propriedades Alteracao
Girar Vertical / Horizontal
Rotagao -36°/+36°
Cisalhamento -10% / +10%
Zoom -10% / +10%
Contraste -10% / +10%
Brilho -10% / +10%

Fonte: O autor (2025).

Os valores das alteragdes na Tabela 1 sao usados na geragdo de novas imagens a partir
do conjunto existente. Como exemplo, o valor da rotagdo esta no intervalo entre -36° ¢ +36°,
logo um novo conjunto de imagens é gerado em cada “época” (do inglés Epoch, periodo de uma
iteracdo completa sobre o conjunto de dados durante o treinamento do modelo) onde um valor
dentro deste intervalo serd aplicado as imagens. Os valores das alteracdes foram escolhidos para
que nao houvesse uma variagdo exagerada das propriedades, comprometendo assim a qualidade
das imagens geradas, evitando degradacdo das texturas e dos detalhes das imagens dos

triatomineos em comparagao a base de dados original (exemplos na Figura 3).

Figura 3 — Exemplos de imagens apds passar pelo processo de aumento de dados

S N e

Fonte: O autor (2025).
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3.1.3 Base de Treinamento Final

Conforme o levantamento acerca das principais espécies de Triatomineos em
Pernambuco (Capitulo 2), as espécies amplamente distribuidas no Estado e que apresentaram
alta taxa de infectividade foram: Triatoma brasiliensis, Triatoma pseudomaculata,
Panstrongylus megistus e Panstrongylus lutzi (Silva et al., 2015; Silva et al., 2019; Silva, et al.,
2021; Medeiros et al., 2023). O total de imagens das espécies de triatomineos brasileiros,
disponibilizados no trabalho de Gurgel-Gongalves et al. (2017), disponivel de forma aberta em

https://dx.doi.org/10.5061/dryad.br14k, foi de 1.502 imagens, dos quais 237 foram das espécies

de interesse ao estudo, sendo elas: 34 da espécie Panstrongylus Lutzi, 84 da espécie
Panstrongylus Megistus, 64 da espécie Triatoma Brasiliensis e 55 da espécie Triatoma
Pseudomaculata. Entretanto, para evitar que o modelo fosse enviesado por exemplos muito
semelhantes, optou-se por trabalhar com apenas quatro imagens de cada espécie. A Erro! Fonte

de referéncia ndo encontrada. tém-se exemplos das imagens do conjunto de dados citado.

Figura 4 - Imagens disponibilizadas no artigo de Gurgel-Gongalves et al. (2017). Da esquerda
a direita, tem-se as espécies P. lutzi, P. megistus, T. brasiliensis e T. pseudomaculata.

Fonte: Gurgel-Gongalves et al., 2017.

As imagens encontradas na plataforma BioDiversity4All, referentes a cada espécie de

triatomineos em questdo, sao exemplificadas na Figura 5.
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Figura 5 - Imagens disponibilizadas na plataforma BioDiversity4All, da esquerda a direita,

tém-se as espécies P. lutzi, T. brasiliensis, P. megistus e T. pseudomaculata.

B
'y

.

Fonte: BioDiversity4All.org (2024).

Com isso a inclusdo das imagens do BioDiversity4All, o conjunto final de imagens para

insetos transmissores da doenga de Chagas ficou disposto conforme mostrado na Tabela 2

Tabela 2 - Total de imagens de insetos transmissores utilizados para o treinamento.

Espécies Quantidade de Imagens
Panstrongylus lutzi 38
Panstrongylus megistus 37
Triatoma brasiliensis 38
Triatoma pseudomaculata 37
Total 150

Fonte: elaborado pelo autor (2025).

Em relacdo aos insetos das subfamilias Ectrichodiinae e Harpactorinae, que nao
transmitem a doenga e podem ser confundidos por pessoas leigas com os vetores da doenga de
Chagas, foram utilizadas imagens apenas da plataforma BioDiversity4All. Foram escolhidas
aleatoriamente 75 imagens de cada subfamilia, totalizando 150 imagens no total, conforme
Tabela 3. Na Erro! Fonte de referéncia nao encontrada., t€m-se exemplos das imagens

selecionadas de ambas as subfamilias, Harpactorinae ¢ Ectrichodiinae.
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Tabela 3 - Total de imagens obtidas da plataforma BioDiversity4All correspondentes aos
insetos nao transmissores da doenga de Chagas, para treinamento do modelo. Recife, 2024.

Familias Quantidade de Imagens
Subfamilia Harpactorinae 75
Subfamilia Ectrichodiinae 75
Total 150

Fonte: O autor (2025).

Figura 6 - Imagens disponibilizadas na plataforma BioDiversity4All. Da esquerda a direita,
tém-se as espécies da subfamilia Harpactorinae, Apiomerus lanipes e Isyndus heros, ¢ da

subfamilia Ectrichodiinae, Pothea jaguaris € Rhiginia cinctiventris
/

\\\\

N\

1 L ‘
Fonte: BioDiversity4All.org (2024).

Por fim, foram escolhidas 150 imagens do conjunto de imagens do dataset COCO. Essas
sdo imagens aleatdrias, incluindo pessoas, animais, paisagens e outras (Erro! Fonte de
referéncia ndo encontrada.), visando evitar falsos positivos, como descrito na se¢do 3.1.1.

Figura 7 - Exemplos de imagens aleatorias selecionadas a partir do conjunto de dados do
COCO2, para treinamento do modelo classificando as imagens como “N&o identificado™.

Ao final, o conjunto total de imagens disponiveis para o treinamento do modelo ficaram

dispostas da seguinte forma (Tabela 4):
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Tabela 4 - Total de imagens utilizadas para treinamento do modelo.

Classificacoes Quantidade de Imagens
Insetos transmissores 150
Insetos ndo transmissores 150
Nao identificado 150
Total 450

Fonte: elaborado pelo autor (2025).
Sobre o conjunto final foram realizadas as operacdes descritas na se¢do 3.1.2.2
objetivando reduzir o overfitting, obtendo-se novas imagens a partir da base de dados original,
contudo alterando-se os parametros. A Figura 8 exemplifica alguns dos resultados obtidos apos

a aplicacao da funcdo de aumento de dados.

Figura 8 - Imagens obtidas a partir do aumento de dados usando TensorFlow/keras.

S

Fonte: O autor (2025).

Legenda: n - Inseto ndo transmissor / s - Inseto transmissor / u - Nao identificado
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3.1.4 Automacdo do Treinamento com RoboFlow

Para facilitar o processo de treinamento do modelo, foi utilizada a ferramenta
RoboFlow*, que é uma plataforma que fornece ferramentas para treinar, implantar e gerenciar
modelos de visdo computacional, como redes neurais convolucionais, para tarefas de
processamento de imagens e videos. Diante do fluxo de processos que a plataforma RoboFlow*
¢ capaz de realizar, foram utilizadas as etapas de "organizag@o” (do inglés - Organize) e
“etiquetacdo” (do inglés - Label) dos dados. Mais especificamente, o RoboFlow* foi utilizado
para agrupar as imagens em cada uma das 3 classes, etiquetar cada imagem com a classe

correspondente e por fim, separar o conjunto de imagens em treino, teste e validagao (
Tabela 5).

Tabela 5 - Conjuntos de imagens separadas por finalidades. Recife, 2024.

Conjunto Porcentagem (Qtd. Imagens)
Treino 70% (315 imagens)
Validagao 20% (90 imagens)
Teste 10% (45 imagens)

Fonte: O autor (2025).

3.1.5 Escolha, Ajuste e Treinamento do Modelo

Para a implementacao do modelo de classificagdo de imagens proposto neste trabalho,
optou-se por utilizar o EfficientNetV2, um modelo pré-treinado, como ponto de partida. O
EfficientNetV2 ¢ uma familia de arquiteturas de redes neurais convolucionais (CNN)
reconhecida por sua notavel velocidade de treinamento e eficiéncia de parametros. A escolha
deste modelo ¢ corroborada pelo estudo de Devi et al. (2023), que investigou a aplicagdo do
EfficientNetV2 no reconhecimento de pragas e doengas em plantas. Em sua andlise, os autores
relataram um bom desempenho do modelo, que alcangou 80,1% de precisdo no extenso e
desafiador conjunto de dados de pragas IP102, ilustrados na Figura 9. O estudo destaca ainda
que o modelo atinge essa alta performance a uma velocidade superior em comparagdo a outras

arquiteturas.

4 roboflow.com
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Figura 9 - Amostras de diferentes espécies de insetos do conjunto de dados IP102, um
benchmark em larga escala para o reconhecimento de pragas agricolas analisadas em Devi et
al. (2023).

Fonte: Devi et al. (2023).

Neste trabalho, o modelo pré-treinado em questao foi ajustado a base de dados seguindo
as instru¢des do tutorial do Keras®, que abordam etapas como a adaptacdo das camadas finais
do modelo, o ajuste dos hiper parametros e o processo de fine-tuning para melhor adequacao ao
novo conjunto de imagens. Ademais, foi utilizada a plataforma Google Colab® para conduzir o
restante do trabalho, empregando os dados disponiveis no RoboFlow. Um script Python,
desenvolvido especificamente para este trabalho foi executado no Google Colab, onde o modelo
final de classificacdo dos insetos foi gerado. Esse script realiza o processamento dos dados e o
treinamento do modelo, e avalia a eficiéncia e a precisao da classificacao. O codigo completo

pode ser consultado no Apéndice A.

3.2 Desenvolvimento do Aplicativo
3.2.1 Desenvolvimento Android Nativo

No desenvolvimento da aplicagdo, foi utilizado Android nativo com Kotlin’, que ¢é a
linguagem de programacao adotada preferencialmente pela plataforma deste 2019 e utilizada
por 50% dos desenvolvedores Android®. O desenvolvimento nativo possui varias vantagens,
dentre as quais, destacam-se que as aplicagdes nativas possuem um maior desempenho, além
do total controle sobre a aplicacio na plataforma desejada, melhorando assim
significativamente a experiéncia do usuario (El-Kassas et al., 2017). Além disso, de acordo com
o site StatCounter (2024), que oferece estatisticas sobre o trafego web, verificou que, no periodo

de setembro de 2023 a setembro de 2024, a plataforma Android correspondeu a mais de 81,66%

5 keras.io
6 colab.research.google.com

7 kotlinlang.org
8 kotlinlang.org/android-overview
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em participagdo no mercado de sistemas operacionai méveis no Brasil, evidenciando um

elevado uso desse sistema operacional mével frente aos demais.

3.2.2 Casos de Uso

Nesta secao sao apresentados os principais casos de uso do sistema desenvolvido, o qual
foi nomeado de TriatoDetect, sendo a palavra “Triato” escolhida em alusdo aos Triatomineos,
insetos vetores da doenca de Chagas e a palavra em inglés “Detect” que significa “detectar”. A

seguir sdo descritos brevemente os casos de uso:

Quadro 1 - Descri¢do dos Casos de Uso do aplicativo “TriatoDetect”. Recife, 2024.

Identificador | Nome do Caso de Uso Descricao

UcCo1 Fazer Login O usuario deve poder autenticar-se no sistema utilizando sua conta
Google. O usudrio seleciona a op¢ao de login com Google, escolhe
a conta do google conectada no dispositivo.

uco2 Listar Imagens Permite que o usuario visualize a lista de imagens que ele enviou
para o aplicativo.
UucCo3 Consultar Informagdes | Ao clicar um item da lista descrita no UC02, ¢ exibido informagdes
das Imagens mais detalhadas da classificagdo, como localizag?o, data ¢ hora.
uco4 Visualizar Mapa O sistema exibe os pontos geoespaciais em um mapa interativo,

permitindo ao usudrio visualizar e interagir com todas as
classificagdes, ndo apenas feitas por ele, mas as classificagdes de
todos os usudrios do aplicativo.

UCo05 Ver no mapa A partir da imagem escolhida no UCO03, o usuario pode ver no
mapa, um pino indicando o ponto exato onde a imagem foi enviada,
e ao clicar nesse ponto ¢ exibido o resultado da classificacdo a data

¢ hora.

UCo06 Tirar Foto O usuario seleciona a opgao de tirar foto, o sistema ativa a camera,
e, apos a captura, a imagem pode ou ndo ser cancelada.

uco7 Selecionar Imagem O usuario acessa a galeria de imagens, escolhe a imagem desejada
podendo ou ndo cancelar a imagem escolhida e selecionar outra.

ucCo8 Classificar Imagem O usuario fornece uma imagem ao sistema, que a processa

conforme usando o modelo desenvolvido neste trabalho. O modelo
classifica a imagem como “Inseto transmissor” ou “Inseto ndo
transmissor” ou “N&o identificado”.

UuCco9 Enviar Imagem Ap6s a classificagdo da imagem (UCO7), o sistema faz o upload da
imagem com os metadados, como URL e data de upload, esses
dados, junto com a imagem, sdo armazenados no sistema.

UCl10 Notificar Autoridades Quando a imagem classificada (UC08) ¢ um inseto transmissor da
doenga de Chagas, um e-mail é enviado para os enderecos de e-
mails que estdo previamente cadastrados.
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Figura 10 - Diagrama de Casos de Uso do aplicativo mobile TriatoDetect.
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F Fonte: O autor (2024).

3.2.3 Ferramentas utilizadas para o Desenvolvimento de Software
3.2.3.1 Android Studio

O Android Studio’ é o ambiente de desenvolvimento integrado (IDE) oficial para o
desenvolvimento de aplicativos Android. Dentre algumas vantagens de se usar Android Studio
pode se destacar suporte a linguagem Kotlin, como também a integragdo a plataforma de nuvem
do Google (Google Cloud Platform), facilitando a agregacdo do aplicativo com os servi¢cos

fornecidos pelo ecossistema do Google (Google, n.d).

% developer.android.com/studio
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3.2.3.2 Firebase

O Firebase ¢ uma plataforma em nuvem do Google que ajuda no desenvolvimento de
aplicativos, fornecendo varias funcionalidades ja integradas no Android Studio. No aplicativo

do presente trabalho, foram usadas as seguintes funcionalidades:

e Firebase Authentication - fornece um servico de back-end, SDKs (Software
Development Kit, um conjunto de ferramentas e bibliotecas que ajuda no
desenvolvimento de software para uma plataforma especifica) e bibliotecas de U
(Interface de Usuario) prontas para autenticar usuarios no seu aplicativo. Esse servigo
oferece suporte a autenticagdo usando senhas, numeros de telefone, provedores de
identidade federados conhecidos, como Google, Facebook e Twitter, entre outros. No

aplicativo, a autenticacao sera feita pelo proprio login fornecido pelo Google.

e Cloud Storage - ¢ um servico de armazenamento de objetos (arquivos), sendo utilizado

para salvar as imagens disponibilizadas pelo usuério.

e Cloud Firestore - ¢ um banco de dados NoSQL flexivel e escalonavel para
desenvolvimento focado em dispositivos moveis, Web e servidores. Esta funcionalidade
foi usada para armazenar os dados das imagens, como a data a qual houve a inser¢do da
imagem, o usudrio que a inseriu, o status da classificacdo, localizagdo, dentro outras

informacdes.

e Maps SDK for Android - ¢ uma funcionalidade do Google Cloud que permite a
manipulacdo de mapas por geolocalizagdo dentro do aplicativo. Isso foi necessario para
acessar a localizagdo do usuario e com esta informagdo, anexar nos dados da imagem o

local onde a imagem foi adicionada.

e Cloud Functions - servigo sem servidor (serveless) que permite executar
automaticamente o codigo de back-end em resposta a eventos acionados por recursos
do Firebase e solicitagdes HTTPS. Foi criada uma funcdo na nuvem para enviar e-mails
as unidades de saude ou responsaveis pelo monitoramento da doenga de chagas no
estado de Pernambuco. Esses e-mails sdo pré-cadastrados no Cloud Firestore do

aplicativo.
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3.2.3.3 GitHub

O Github'® ¢ uma plataforma de hospedagem de codigo-fonte e arquivos com controle
de versdo usando o Git. O Git!'! é um sistema de controle de versio distribuido, gratuito e de
codigo aberto. A duas tecnologias acima (Git/GitHub) foram utilizadas para o versionamento e

repositorio do codigo fonte do aplicativo'?.

10 github.com

1 git-scm.com
12 github.com/TriatoDetect
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4 RESULTADOS E DISCUSSAO

4.1 Resultados do Modelo

Apos treinar o modelo, os resultados obtidos foram promissores, apresentando uma
perda (loss) de 0.0480 e uma acuracia de 98,59% no conjunto de treinamento. A perda ¢ uma
medida numérica que quantifica o erro do modelo, ou seja, o quio distante as previsdes do
modelo estdo dos valores corretos. No nosso caso, foi utilizada a fungao de perda Cross-Entropy
(Entropia Cruzada), muito comum em tarefas de classificacdo, que ¢ calculada da seguinte

forma:

1 N C
L= D Ve 080,
i=1c=1

Onde:
e N ¢é o numero total de amostras;
e ( é o numero de classes;
e Y. ¢1seaamostra i pertence a classe ¢ e 0 caso contrario;
* ¥;. ¢éaprobabilidade prevista pelo modelo para a classe c.

A acuracia, por outro lado, mede a proporcao de previsdes corretas em relagdo ao total

de previsoes feitas pelo modelo, e ¢ calculada como:

NuUmero de Previsbes Corretas

Acuracia = ~ —
Numero Total de Previsoes

No conjunto de validagao, o modelo alcangcou uma perda de 0,0736 ¢ uma acuracia de
97,26%, indicando que ele consegue generalizar bem para novos dados. O Grafico 1 ilustra a
evolucdo da perda e precisdo ao longo das épocas (epochs no grafico) de treinamento e

validagao.



27

Grafico 1 - Perda e acuracia nas etapas de treino e validagao do modelo.
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Fonte: O autor (2024).

O modelo treinado foi avaliado em um conjunto de testes composto por imagens distintas
dos conjuntos de treinamento e validagao. No conjunto de teste, o modelo apresentou uma perda
de 0.2020 e uma acuracia de 91,89%. Esses resultados mostram que, apesar da complexidade e
variabilidade dos dados de teste, o modelo EfficientNetV2 customizado manteve um

desempenho consistente e capaz de generalizar para novos dados.

Esses resultados estdo alinhados com estudos recentes que apontam a eficicia de
arquiteturas modernas para tarefas de classificagdo de pragas, especialmente em cendarios de
aplicacdo modvel. Nesse contexto, o trabalho de Akhtar et al. (2025) sobre arquiteturas de deep
learning otimizadas para a classificacdo de insetos agricolas em dispositivos de borda (edge)
reforca a relevancia de tais abordagens. Esse ndo apenas selecionou modelos de alto
desempenho, como o EfficientNet, mas também investigou técnicas de quantizacdo para
otimizar a implementacdo em plataformas moéveis, destacando a capacidade de manter uma
acurdcia de classificacdo de 77,8% em dados de teste, a0 mesmo tempo em que o tamanho do
modelo foi reduzido de 33 MB para apenas 9,6 MB pds-treinamento, permitindo que o modelo
funcione dentro de um aplicativo de celular para classificar insetos em tempo real, diretamente

no aparelho e sem precisar de internet.

Essa abordagem ¢ especialmente relevante para o projeto, que também se trata do
desenvolvimento de um aplicativo com o modelo integrado. Os resultados desse estudo

suportam, portanto, a escolha pela arquitetura EfficientNetV2 para o desenvolvimento de um
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aplicativo de detecgao de insetos preciso, eficiente em recursos computacionais, € que funcione

bem em campo.

4.2 Aplicativo TriatoDetect

Com o modelo de classificagdo de imagens treinado e avaliado, a proxima etapa
envolveu a integragdo desse modelo em o aplicativo TriatoDetect. Esse aplicativo ndo apenas
aproveita a capacidade do modelo de identificar possiveis vetores da doenca de Chagas com
alta precisdo, como também oferece uma interface pratica e acessivel ao usudrio. Esta secdo

descreve as principais telas e funcionalidades do aplicativo.

Na Figura 11 estdo as telas de login e autenticacdo do aplicativo mével TriatoDetect.
A autenticagdo via Firebase Authentication usando uma conta Google disponivel no aparelho
em que o aplicativo foi instalado. Esta forma de autenticacao foi escolhida pois os aparelhos
Android necessitam de uma conta Google vinculada ao dispositivo, facilitando assim, o

processo de autenticacdo do usuario.

Figura 11 - Ilustracdo da tela inicial de login (UCO1) do aplicativo movel TriatoDetect.

Choose an account

to continue to TriatoDetect

& Dudu Freitas
&% dudu freitaz13@gmall.com

2+ Add another account

To continue, Google will share your name,
email address, and profile picture with
TriatoDetect. Before using this app, review its

TriatoDetect

G ENTRAR

Fonte: O autor (2025).
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Apos realizar o login, exibe-se a tela de entrada no aplicativo (Figura 12). Essa tela,
que corresponde ao caso de uso (UCO02 - Listar Imagens), possui a listagem de todas as
classificagdes de imagem realizadas pelo usudrio, além de outras funcionalidades. Ao clicar em
alguma imagem da lista, ¢ exibido um pop-up com todas as informacdes da imagem, como

localizagdo, data e hora, e a classificagao.
Figura 12 - Ilustragdo da entrada do aplicativo (UC02) do aplicativo mével TriatoDetect.
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y Recife - Pernambuco

Imagens

Fonte: O autor (2024).

No pop-up de informagdes de uma imagem (UCO03 - Consultar Informacdes das
Imagens), também possui uma a¢do “VER NO MAPA” (UCO0S5 - Ver no Mapa), onde mostra

no mapa a localizacao de onde foi feita a classificacao da imagem (Figura 13).
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Figura 13 - Ilustragdo das opg¢des dos casos de uso UC03 e UCOS5 do aplicativo movel TriatoDetect.
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Fonte: O autor (2024).

Voltando para a tela de listagem, existe a op¢ao de o usudrio visualizar as localizagdes
de todas as classificagdes feitas pelo aplicativo, tanto as classificagdes relacionadas as imagens
adicionadas pelo usuario, como também por outros usudrios, fornecendo assim um mapa de

risco, no caso de uso UC04 - Visualizar Mapa, como exemplifica na Figura 14.
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Figura 14 - Ilustracao detalhada da funcionalidade do caso de uso UCO0S5 do aplicativo mével
TriatoDetect.
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Fonte: O autor (2024).

A agdo para fazer a classificacdo de uma imagem ¢ representada pelo icone de uma
camera e esta centralizada na parte inferior da tela. Esta acdo leva a uma tela de instrugdes,
nesta tela, além das instrugdes apresentadas, o usuario pode escolher se vai realizar a captura,
consequentemente ativa o sistema da camera (UCO06 - Tirar Foto) ou escolher uma imagem da

galeria (UCO7 - Selecionar Imagem), ou tirar uma foto (Figura 15).
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Figura 15 - [lustracao da tela de instrugdes que apresenta as opgdes do caso de uso UC06/UCO7
TriatoDetect.

< Instrugdes

1. Va a um ambiente bem iluminado;

2. Coloque o inseto em um fundo
branco(Folha de Oficio, por exemplo);

3. Centralize todo o inseto na area
indicada em vermelho;

4. Além da foto, também pode ser
escolhida uma imagem da galeria;

Fonte: O autor (2024).

Na agao de tirar uma foto, caso de uso UCO06 - Tirar Foto, o usuario acessa uma tela de
camera integrada no aplicativo onde existe a indicagdo em vermelho, de uma area onde o inseto
deve ficar (Figura 16). Esta tela foi feita utilizando o CameraX, uma biblioteca do Jetpack'?

criada para facilitar o desenvolvimento de apps de camera.

13 developer.android.com/jetpack
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Figura 16 - Ilustracdo exibindo a funcionalidade do caso de uso UCO06 aplicativo moével
TriatoDetect.

© =+ 36%8&

Fonte: O autor (2025).

Ao tirar a foto, ou ap6s selecionar uma imagem da galeria, o usuario € direcionado para
a tela de confirmagao, onde nela, ele pode confirmar se a imagem deve ser classificada ou

cancelada, voltando para a tela de instrugdes (Figura 17).
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Figura 17 - Ilustragdo exibindo a tela de confirmacao do aplicativo mével TriatoDetect.

A3 EHE -

Confirmar Imagem

X CANCELAR v/ CONFIRMAR

Fonte: O autor (2024).

Ao confirmar a imagem no caso de uso UCO08 - Classificar Imagem, o processo de
classificagdo ¢ realizado utilizando o modelo criado neste projeto, que ¢ executado diretamente
no dispositivo do usudrio utilizando uma biblioteca do TensorFlow?. Todo o cédigo da

classificagdo feita diretamente no aplicativo, esta disponivel no Apéndice B.
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Quando a classificacdo estiver pronta, todos os dados sdo salvos no Firebase (UCO09 - Enviar
Imagem) e o usudrio seja redirecionado para a tela de listagem, onde a nova imagem ja esta
disponivel para consulta. Ademais, o usuario pode identificar insetos classificados como
transmissores da doenca de Chagas através de uma coloragdo especifica para cada classificagao,
detalhada no Quadro 2.

Quadro 2 - Classificagdao por cor utilizada apos analise das imagens no aplicativo movel
TriatoDetect.

Classificacoes Cores
Inseto Transmissor Vermelho

Inseto Ndo Transmissor Verde

Nao identificado Azul

Fonte: O autor (2024).

Se a classificagdo for de algum inseto transmissor de interesse, um e-mail ¢ enviado para
os e-mails pré-cadastrados (UC10 — Notificar Autoridades), informando que foi detectado um
inseto transmissor da doenca de Chagas, qual a localizagdo e horario, além da imagem.
Referente a localizagdo presente no e-mail, esta ¢ fornecida através de um link onde a autoridade
que recebe o e-mail possa acessar, sendo redirecionada para o Google Maps com um indicador

da localizacao exata de onde a deteccao foi feita (Figura 18).

Figura 18 - Ilustracdo exibindo a tela de e-mail apos detec¢@o de um inseto transmissor
através do aplicativo movel TriatoDetect.

€ O m BB bdedt ¢ > pEmw
TriatoDetect - Novo Triatomineo Identificado D caiedeentads « F=3 ]

Triato Detect <triatodetsct@zohomail com> @ dom, 21dejul.de2024,1439 % @ &

para lepf, mim ¥

Foi identificado um novo inseto tr i Localizagdo: Santa Clara - California / Hordrie: 21/07/2024 - 18:30

1anexo - Anexos verificados pelo Gmail @ &

(& Responder ) ( 4 Responderatodos ) ( ~ Encaminhar | (@ )

Fonte: O autor (2025).
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4.3 Discussao

A classificacdao de imagens realizada pelo aplicativo (UCO0S8), que categoriza as imagens
em "Inseto transmissor", "Inseto ndo transmissor" ou "Nao identificado", foi projetada dessa
forma para facilitar o entendimento do publico em geral. A intencao foi garantir que o usuario
nao precisasse de conhecimento prévio sobre triatomineos para compreender a funcionalidade
e a classificacdo fornecidas pelo aplicativo. Dessa forma, a estruturacdo do aplicativo foi
concebida para ser acessivel a populagdo, alinhando-se com Dias et al. (2016), que destacam a
importancia da participacdo comunitaria na notificagdo de triatomineos para a manuten¢ao do
controle de vetores domiciliares. No entanto, tem-se observado que, com o €xito na reducdo da
transmissdo da infec¢do chagésica, somado ao surgimento de outros agravos com maior
visibilidade na midia e na comunicagdo em saude, uma parte da populagdo, especialmente os
mais jovens, que nao vivenciaram os periodos de transmissdo ativa da doenca de Chagas
associada a alta infestagdo por triatomineos, apresentam dificuldades para reconhecer e

encaminhar corretamente os insetos aos servi¢os de saude (Dias et al., 2016).

Além disso, o trabalho de Honorato (2020), que avaliou a presenca de triatomineos em
diferentes mesorregides do Rio Grande do Norte, destacou que a falta de identificacdo do
ambiente e do ecotopo de captura dos triatomineos, impossibilitaram o entendimento mais
completo do panorama da epidemiologia dos vetores da doenca de Chagas na regido,
dificultando assim a realizagao das atividades de vigilancia e controle desses insetos (Honorato,
2020). Dessa forma, durante a elaboragdo dos casos de uso do aplicativo, o UC10 (Notificar
Autoridades) foi incluido devido a necessidade de, além da identificacio dos insetos
transmissores da doenca de Chagas, por vezes desconhecidos pela populagdo, também

comunicar aos setores e/ou equipes da vigilancia epidemioldgica e entomoldgica.

Ademais, Honorato (2020) também afirma que houve a entrega de insetos erroneamente
pela populagdo, que insetos hemipteros predadores e fitofagos, foram confundidos com
triatomineos. Assim sendo, ressalta-se a importidncia da elaboragdo desse aplicativo,
principalmente na diferenciacdo dos insetos transmissores daqueles que ndo sdo transmissores
da doenca de Chagas, visto que ha diversas semelhancas morfoldgicas, podendo causar duvidas

aos profissionais e a populagao.

A ferramenta web e mével “TriatoKey”, desenvolvida por Oliveira et al. (2017), foi
criada para auxiliar na identificagdo dos triatomineos, voltada principalmente para técnicos de

saude. A abordagem de desenvolvimento desse software baseia-se em séries de perguntas de
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“sim” ou “ndo” conduzindo o usudrio na dire¢do da identificagdo correta da espécie ou taxon.
Basicamente, a identificac¢do ¢ estruturada em caracteres morfoldgicos visualizados por fotos
de espécimes catalogados da Colecdo de Vetores da Doenga de Chagas (Fiocruz-COLVEC),

bem como, vivos de colonias de insetarios da Fiocruz.

Comparando-se a ferramenta desenvolvida por Oliveira et al. (2017), o “TriatoKey”,
com o aplicativo desenvolvido no presente trabalho, o TriatoDetect, o principal ponto de
divergéncia sdo os métodos que foram utilizados para realizar a identificagdo dos insetos.
Enquanto o “TriatoKey” se utiliza de perguntas e respostas para conduzir a identificagdo, o
TriatoDetect utiliza um modelo de Deep Learning para identificagdo automatica dos insetos,
podendo este portanto, por nao demandar um conhecimento prévio e detalhado da entomologia,

ser explorado tanto por profissionais e quanto pela populacao.

Outra funcionalidade implementada no aplicativo TriatoDetect, desenvolvido no
presente trabalho, ¢ a exibicdo de um mapa de risco com o0s insetos transmissores, 0s
Triatomineos, detectados por todos os usudrios, permitindo assim que o usudrio consiga
visualizar todos os locais aos quais foram identificados a presenca desse vetor,
consequentemente alertando as pessoas que estao nessas regides para ado¢do de medidas de
protecao e fomentar a vigilancia. Tal funcionalidade assemelha-se ao mapa interativo elaborado
pela Secretaria de Satide do Estado de Sao Paulo, que exibe areas de risco de transmissdo da

Febre maculosa, diante da presenca dos vetores na regiao (Sao Paulo, 2024).

Por fim, pretende-se que o aplicativo desenvolvido possa auxiliar na identificacdo e
notificagdo aos 6rgaos de vigilancia responsaveis, € ajude, portanto, a superar principalmente
as barreiras fisicas, visto que a extensdo territorial do estado de Pernambuco torna-se um
obstaculo as agdes de vigilancia. Ademais, também ¢ desejado que esse aplicativo contribua
para o empoderamento e educacdo da populagdo acerca dos insetos transmissores da doenga de
Chagas e possa ser mais uma ferramenta para auxiliar na identificagdo e captura desses vetores,
podendo ele ser implementado junto aos Postos de Informagdo em Triatomineos (PIT), que
estdo aos poucos sendo estabelecidos no Estado. Hoje ha cerca de 25 PIT’s, ao quais grande
parte encontra-se concentrados na regido da 4° Geréncia Regional de Saude, com sede em

Caruaru (IV GERES) (Fiocruz, 2017).



38

4.4 Limitacoes

Apesar dos bons resultados alcancados por este trabalho e ¢ fundamental reconhecer as
limitagdes referentes ao estudo, que abrem caminhos para pesquisas futuras. Primeiramente, a
principal limitacdo estd no tamanho ¢ na composi¢ao do conjunto de dados utilizado para o
treinamento do modelo. Embora técnicas de aumento de dados fora utilizada para expandi-la, a
base original de 450 imagens ¢ relativamente pequena para os padrdes de modelos de deep
learning. A literatura demonstra que a performance e a capacidade de generalizacdo de modelos
de visao computacional estdo diretamente correlacionadas ao volume e a diversidade dos dados
de treinamento (Sun et al., 2017). A queda de acuracia observada entre o conjunto de validagao
(97,26%) e o de teste (91,89%) sugere um leve sobre ajuste (overfitting) e um desafio de
generalizacdo, onde o modelo pode ndo oferecer a mesma eficicia em imagens com

caracteristicas distintas das vistas no treino.

Em segundo lugar, o conjunto de dados, embora diversificado por imagens de ciéncia
cidada e com isso, possuirem uma boa variacdo de fotos tiradas por usudrios, ainda assim,
podem conter vieses de selecdo que afetam o desempenho em cenarios do mundo real. As
imagens foram coletadas de fontes académicas e principalmente, da plataforma
BioDiversity4All, a quais, podem nao representar completamente a distribuicdo de espécies e
as condicdes de captura fotografica (tipos de camera de celular, iluminagdo, fundos)
encontradas pelos usudrios finais em Pernambuco. Este fendmeno, conhecido como dataset
shift, ocorre quando a distribui¢do dos dados de producao difere da distribuicdo dos dados de
treinamento, sendo um desafio conhecido na implementacao de sistemas de aprendizado de

maquina (Torralba & Efros, 2011; Mehrabi et al., 2021).

A terceira limita¢do ¢ a auséncia de uma validacdo de campo. O modelo foi avaliado
em um conjunto de teste estatico, mas sua performance ainda ndo verificada em um estudo
clinico ou de campo, com o aplicativo sendo utilizado em tempo real por agentes de saude e
pela populacdo. A validagdo em cendrios reais ¢ um passo indispensdvel para garantir a
seguranga, eficacia e confiabilidade de qualquer ferramenta de inteligéncia artificial aplicada a

saude antes de sua implementagdo em larga escala (Topol, 2019).

Apesar dessas limitagdes, os resultados obtidos oferecem um base para a evolugdo
futura do modelo e aplicativo, que devem incluir a expansao continua do banco de dados, assim

como a realizacao de estudos de validagcdo em campo.
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5 CONSIDERACOES FINAIS

O aplicativo mével TriatoDetect, desenvolvido neste trabalho, oferece aos cidadaos uma
ferramenta tendo como objetivo de facilitar a identificagdo dos vetores do Chagas, se utilizando
de um modelo de Deep Learning com acurécia superior a 90% na diferenciacdo dos insetos
transmissores € 0s nao transmissores. Além disso, o aplicativo também notifica as autoridades
sanitdrias ao enviar um e-mail quando insetos transmissores da doenca de Chagas sao
identificados. Assim sendo, objetivando superar as barreiras fisicas impostas pela vasta
extensdo territorial do estado de Pernambuco, espera-se que o aplicativo contribua

significativamente para a melhoria das ag¢des de vigilancia em saude.

Ademais, uma das funcionalidades do TriatoDetect ¢ a exibi¢do de um mapa de risco que
permite aos usudrios visualizar as areas onde os triatomineos foram detectados. Isso ndo apenas
alerta a populacao sobre a presenca desses vetores, mas também fomenta a ado¢do de medidas
de protecdo e vigilancia. E por ser um aplicativo mdvel, sua acessibilidade se amplia,
permitindo que uma diversidade maior de usudrios tenha acesso as informacdes, bastando

apenas um celular com internet.

Prospectivamente, avalia-se a ampliacdo do potencial de identificacdo de vetores,
aumentando o banco de dados do aplicativo para incluir uma maior variedade de espécies de
triatomineos, além das quatro atualmente reconhecidas. Também seria benéfico aprimorar a
funcionalidade do mapa de risco, incluindo uma funcdo de notificacdo aos usuérios quando
triatomineos forem detectados nas proximidades. Por fim, a criacdo de uma versao do aplicativo
voltada para profissionais entomologistas, com recursos avancados de identificagdo quanto a

espécie e género dos triatomineos, pode potencializar ainda mais as aplicagdes do TriatoDetect.

Com essas propostas, espera-se que o TriatoDetect seja adotado como uma ferramenta
eficaz para a promog¢ao da saude publica, contribuindo para a educacdo e empoderamento da

populagdo no combate a doenca de Chagas.
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APENDICE A

# Instala as bibliotecas necessdrias: keras-tuner para otimizacdo de hiperparametros e roboflow para manipulacdo do dataset
!pip install keras-tuner --q
!pip install roboflow --q

129.1/129.1 kB 3.8 MB/s eta 0:00:00
86.7/86.7 kB 5.0 MB/s eta 0:00:00
66.8/66.8 kB 6.4 MB/s eta 0:00:00
49.9/49.9 MB 19.3 MB/s eta 0:00:00
7.8/7.8 MB 121.5 MB/s eta ©:00:00

)

# Importa as bibliotecas essenciais para o desenvolvimento do modelo de aprendizado de maquina
import numpy as np

import keras

from keras import layers

from tensorflow import data as tf_data
import matplotlib.pyplot as plt

from keras import applications

import tensorflow as tf

import numpy as np

import os

import keras_tuner as kt

from roboflow import Roboflow

import json

# Exibe informacGes sobre a GPU disponivel no ambiente de execugdo
!nvidia-smi

3% Sat Jun 21 00:54:11 2025

et +
| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 |

----------------------------------------- e T
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pur:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
| |
| @ Tesla T4 off | 00000000:00:04.0 Off | e |
| N/JA - 49C P8 10w / 70w | OMiB / 15360MiB | % Default |
| | | N/A |
B B e +
B e +
| Processes: |
| GPU GI (I PID Type Process name GPU Memory |
| ID ID Usage |
| |
| No running processes found |
e e +

# Define constantes e parametros para o modelo, como tamanho da imagem, tamanho do lote, nimero de classes e rétulos
IMG_SIZE = 224

IMAGE_SIZE = (IMG_SIZE, IMG_SIZE)

BATCH_SIZE = 32

CLASSES = 3

LABELS_CLS = ["n", "s", "u"] # n-> ndo transmisso / s -> transmissor / u -> ndo definido

INITIAL_EPOCHS = 25 # Numero inicial de épocas para a busca de hiperparametros

FINAL_EPOCHS = 8 # Nimero de épocas para o fine-tuning do melhor modelo

# Obtém o diretério de trabalho atual e cria um diretério chamado 'datasets’ para armazenar os dados
import os

HOME = os.getcwd()

print (HOME)

Imkdir {HOME}/datasets
# Altera o diretdrio atual para a pasta ‘datasets’
%cd {HOME}/datasets

3% /content
/content/datasets

# Baixa o dataset do Roboflow utilizando a chave de API e detalhes do projeto fornecidos
rf = Roboflow(api_key="vuaB7tYv7NeXYuonalwQ")

project = rf.workspace("ifpetcc").project(”class-uni")

version = project.version(1)

dataset = version.download("folder")

-Iv loading Roboflow workspace...
loading Roboflow project...
Downloading Dataset Version Zip in CLASS-UNI-1 to folder:: 100%|[BJIMl| 28520/28520 [00:00<00:00, 41056.75it/s]

Extracting Dataset Version Zip to CLASS-UNI-1 in folder:: 1oo%|[ Bl 378/378 [00:00<00:00, 2544.17it/s]



# Define os caminhos para as pastas dos conjuntos de dados de treino, validacdo e teste
train_folder_dataset = "/content/datasets/CLASS-UNI-1/train"

val_folder_dataset= "/content/datasets/CLASS-UNI-1/valid"

test_folder_dataset= "/content/datasets/CLASS-UNI-1/test"

# Carrega o conjunto de dados de treino a partir do diretério especificado

train_ds = keras.utils.image_dataset_from_directory(
train_folder_dataset,
validation_split=None, # Ndo divide para validacdo aqui, pois temos um conjunto de validacdo separado
subset=None, # Usa o diretério inteiro como conjunto de treino
seed=1337, # Semente para embaralhar e garantir reprodutibilidade
label_mode="int", # Os rétulos sdo codificados como int
image_size=IMAGE_SIZE, # Redimensiona as imagens para o tamanho definido
batch_size=BATCH_SIZE # Define o tamanho do lote

)

-Zv Found 254 files belonging to 3 classes.

# Carrega o conjunto de dados de validacdo a partir do diretdério especificado
val_ds = keras.utils.image_dataset_from_directory(
val_folder_dataset,
validation_split=None, # Ndo é necessario dividir para validacado
subset=None, # Usa o diretério inteiro como conjunto de validacdo
seed=1337, # Semente para reprodutibilidade
label_mode="int", # Os rétulos sdo codificados como int
image_size=IMAGE_SIZE, # Redimensiona as imagens
batch_size=BATCH_SIZE # Define o tamanho do lote

)

-zv Found 73 files belonging to 3 classes.

# Carrega o conjunto de dados de teste a partir do diretdrio especificado
test_ds = keras.utils.image_dataset_from_directory(
test_folder_dataset,
validation_split=None, # Ndo é necessario dividir para validacdo
subset=None, # Usa o diretdério inteiro como conjunto de teste
seed=1337, # Semente para reprodutibilidade
label_mode="int", # Os rdétulos sdo codificados como int
image_size=IMAGE_SIZE, # Redimensiona as imagens
batch_size=BATCH_SIZE # Define o tamanho do lote

)

3% Found 37 files belonging to 3 classes.

# Exibe algumas imagens de exemplo do conjunto de dados de treino
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(np.array(images[i]).astype("uint8"))
plt.title(LABELS_CLS[int((labels[i]))]) # Exibe o rétulo da classe
plt.axis("off") # Oculta os eixos
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data_augmentation = keras.Sequential(

[
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.1),
layers.RandomTranslation(@.1, ©.1),
layers.RandomContrast(0.1),
layers.RandomBrightness(0.1),

1,

name="data_augmentation”,

train_ds = train_ds.prefetch(tf_data.AUTOTUNE)
val_ds = val_ds.prefetch(tf_data.AUTOTUNE)
test_ds = test_ds.prefetch(tf_data.AUTOTUNE)

print ("Especificacdo do Dataset de Treino:", train_ds.element_spec)

print("Especificacdo do Dataset de Validacdo:", val_ds.element_spec)

3% Especificacdo do Dataset de Treino: (TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None,)
Especificacdo do Dataset de Validacdo: (TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name=None), TensorSpec(shape=(None,

4 »

# Constréi o modelo base

def build_base_model(input_shape=(224, 224, 3)):
# --- Pipeline do Modelo Base---
# 1. Camada de Input
inputs = layers.Input(shape=input_shape)

# 2. Aumento de Dados (executado na GPU, apenas no treinamento)
x = data_augmentation(inputs)

# 3. Pré-processamento especifico do modelo base
x = applications.efficientnet_v2.preprocess_input(x)

# 4. Modelo Base Congelado
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base_model = applications.EfficientNetV2Bo(
include_top=False,
weights="imagenet’,
input_tensor=x,

return base_model, inputs
base_model, inputs = build_base_model()

-Zv Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/efficientnet_v2/efficientnetv2-b@_notop.h5
24274472/24274472 ————————————— @s Ous/step

def build_model(hp, input_shape=(224, 224, 3), num_classes=3):
# --- Pipeline do Modelo ---
base_model.trainable = False

# 1. Cabeca de Classificacdo Leve (Melhor Pratica)
x = layers.GlobalAveragePooling2D(name="avg_pool")(base_model.output)
x = layers.BatchNormalization()(x) # Ajuda a estabilizar o treinamento

hp_dropout_rate = hp.Float('dropout_rate', min_value=0.2, max_value=0.5, step=0.1)
x = layers.Dropout(hp_dropout_rate, name="dropout™)(x)

# Camada de saida
outputs = layers.Dense(num_classes, activation=

softmax’, name="predictions")(x)
# --- Fim do Pipeline ---

# Criacdo e Compilacado
model = keras.Model(inputs, outputs)

hp_learning_rate = hp.Float("lr", min_value=le-5, max_value=le-2, sampling="log")
optimizer = keras.optimizers.Adam(learning_rate=hp_learning_rate)

# Compilando o Model

model. compile(
optimizer=optimizer,
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")],

)

return model

# Inicializa o tuner Hyperband para a otimizacdo de hiperparametros
tuner = kt.Hyperband(
build_model, # A funcdo que constréi o modelo
objective=[kt.Objective('val_loss', 'min'), kt.Objective('val_acc', 'max')], # Objetivos a serem otimizados (minimizar perda de val:
max_epochs=INITIAL_EPOCHS, # Nimero maximo de épocas para treinar
factor=3, # Fator pelo qual o nimero de épocas é reduzido em brackets sucessivos
directory="my_dir', # Diretdério para salvar os resultados
project_name='tcc_triato’ # Nome do projeto

# Define um callback de EarlyStopping para parar o treino se a perda de validacdo nido melhorar
stop_early = tf.keras.callbacks.EarlyStopping(monitor="val_loss', patience=5)

# Inicia a busca pelos melhores hiperparametros utilizando o tuner
tuner.search(train_ds, epochs=INITIAL_EPOCHS, validation_data=val_ds, callbacks=[stop_early])

# Obtém os melhores hiperparametros encontrados pelo tuner
best_hps = tuner.get_best_hyperparameters(num_trials=1)[@]

# Obtém os melhores hiperparametros como um diciondrio e os salva em um arquivo JSON
best_hps_dict = best_hps.values
with open('best_hyperparameters.json’, 'w') as json_file:

json.dump(best_hps_dict, json_file)

# Define o caminho para o arquivo JSON com os melhores hiperparametros salvos no Google Drive
file_path = '/content/drive/MyDrive/triat/best_hyperparameters_efficientnet_v2.json’

# Carrega os melhores hiperparametros do arquivo JSON
with open(file_path, ‘r') as json_file:
best_hps_dict = json.load(json_file)

# Converte o diciondrio de volta para um objeto HyperParameters do KerasTuner
best_hps = kt.HyperParameters()
best_hps.values = best_hps_dict
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# Exibe os melhores hiperparametros carregados
best_hps.values

3% {'dropout_rate': 0.30000000000000004,

"1r': 0.0024646295953947225,
"tuner/epochs': 25,
“tuner/initial_epoch': @,
"tuner/bracket’': 0,
‘tuner/round’: 0}

# Constréi o modelo utilizando os melhores hiperparametros encontrados durante a otimizacdo
model = tuner.hypermodel.build(best_hps)

# Define callbacks para o treinamento: ReducelROnPlateau, ModelCheckpoint, EarlyStopping
reduce_lr = tf.keras.callbacks.ReducelROnPlateau(

)

monitor='val_loss', # Monitora a perda de validacdo
factor=0.1, # Reduz a taxa de aprendizado por um fator de 0.1

patience=3, # Nimero de épocas sem melhora apds o qual a taxa de aprendizado sera reduzida
min_lr=le-6 # Limite inferior para a taxa de aprendizado

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(

)

filepath="best_model.keras', # Caminho para salvar o melhor modelo
monitor="val_loss', # Monitora a perda de validacdo
save_best_only=True, # Salva apenas o melhor modelo

mode="min', # Salva quando a perda de validacdo for minima
verbose=1 # Exibe mensagens ao salvar

early_stopping_callback = tf.keras.callbacks.EarlyStopping(

monitor=‘val_loss", # Monitora a perda de validacao
patience=7, # Numero de épocas a esperar sem melhora antes de parar o treino.
verbose=1, # Imprime uma mensagem na tela quando o treino é interrompido.

restore_best_weights=True # Restaura os pesos do modelo da melhor época encontrada.

# Treina o modelo utilizando os melhores hiperparametros e os callbacks definidos
history = model.fit(

3

train_ds,

epochs=INITIAL_EPOCHS, # Treina pelo nimero inicial de épocas

callbacks=[checkpoint_callback, reduce_lr, early_stopping_callback], # Usa os callbacks definidos
validation_data=val_ds, # Usa o conjunto de validacdo para avaliacdo



8/8 ——————————————— s o/MS/STEP - acC: V.YY33 - 10SS:
Epoch 22: val_loss did not improve from 0.08602

8/8 ————————— 1s 134ms/step - acc: 0.9936 - loss:
Epoch 23/25

8/8 ——————————— ©@s 84ms/step - acc: 0.9871 - loss:
Epoch 23: val_loss improved from 0.08602 to 0.08460, saving
8/8 ——————————— 2s 240ms/step - acc: 0.9868 - loss:
Epoch 24/25

8/8 —————————— @s B84ms/step - acc: 0.9886 - loss:
Epoch 24: val_loss improved from 0.08460 to 0.08204, saving
8/8 —————————————— 3s 239ms/step - acc: 0.9859 - loss:
Epoch 25/25

8/8 @s 84ms/step - acc: 0.9898 - loss:

8/8

Epoch 25: val_loss did not improve from 0.08204
————————————— 1s 130ms/step - acc: 0.9892 - loss:
Restoring model weights from the end of the best epoch: 24.

# Carrega o melhor modelo salvo durante o treinamento
def load_best_model(best_model_path="best_model.keras"'):
# Define objetos customizados necessarios para carregar o modelo

custom_objects = {'preprocess_input': applications.efficientnet_v2.preprocess_input}

# Carrega o modelo
best_model = tf.keras.models.load_model(

)

best_model_path,
custom_objects=custom_objects,

v.024>
0.0241 - val_acc: 0.9726
0.0239
model to best_model.keras
0.0250 - val_acc: 0.9726
0.0358
model to best_model.keras
0.0429 - val_acc: 0.9726
0.0216

0.0234 - val_acc: 0.9863

val_loss:

val_loss:

val_loss:

val_loss:

safe_mode=False # Define como False para permitir o carregamento de objetos customizados

return best_model

model = load_best_model()

# Imprime o Gltimo valor de cada métrica do histdérico de treinamento
history_dict = history.history

for key, values in history_dict.items():
print(f"{key}: {values[-1]}") # Exibindo o ultimo valor de cada métrica

'3 acc: 0.9842519760131836

loss: ©0.83755103796720505

val_acc: 0.9863013625144958
val_loss: 0.08964268118143082
learning_rate: 0.0024646297097206116

# Plota os graficos de perda e acuracia de treino e validacdo
import matplotlib.pyplot as plt

# Extrai os dados de perda e acurdcia do histérico
loss = history_dict['loss’]

val_loss = history_dict['val_loss']

accuracy = history_dict.get('acc’)

val_accuracy = history_dict.get('val_acc')

# Cria o gréafico de perda
plt.figure(figsize=(12, 5))

plt.
plt.
.plot(val_loss, label='Perda Validacdo')
.title('Perda de Treino e Validacdo')
.xlabel("Epochs")

.ylabel('Perda")

.legend()

subplot(1, 2, 1)
plot(loss, label='Perda Treino')

# Cria o grafico de acuracia, se disponivel
if accuracy and val_accuracy:

plt.
plt.
plt.
.title('Acurdcia de Treino e Validacdo')

plt

plt.
plt.
plt.

subplot(1, 2, 2)
plot(accuracy, label="Acuricia Treino')
plot(val_accuracy, label='Acurdcia Validacdo')

xlabel('Epochs")
ylabel('Acuracia’)
legend()

plt.show()

0.0884

0.0846

0.0820

0.0896
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learning_rate: 0.0025

learning_rate: 0.0025

learning_rate: 0.0025

learning_rate: 0.0025
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# Método para exibir as camadas do modelo
def show_layers(model_show) :
for i, layer in enumerate(model_show.layers):
print(f"{i:<5} {layer.name:<25} {str(layer.trainable):<20}")
# Metodo para descongelar as ultimas camadas de um modelo
def unfreeze_base_model(prefixo_inicial: str):
base_model.trainable = False
print(“Modelo base inicialmente congelado.")
show_layers(base_model)
encontrou_ponto_de_corte = False
camadas_descongeladas = @
print(f"\n--- Procurando ponto de corte com prefixo: ‘{prefixo_inicial}' ---")

for layer in base_model.layers:

if encontrou_ponto_de_corte:
layer.trainable = True
print(f" - Descongelando (pés-corte): {layer.name}")
camadas_descongeladas += 1

elif layer.name.startswith(prefixo_inicial):
encontrou_ponto_de_corte = True
layer.trainable = True
print(f" - PONTO DE CORTE ENCONTRADO! Descongelando: {layer.name}")
camadas_descongeladas += 1

if not encontrou_ponto_de_corte:

print(f"\nAVISO: O prefixo '{prefixo_inicial}' n3o foi encontrado em nenhuma camada.")
else:

print(f"\nOperacdo concluida. Total de {camadas_descongeladas} camadas descongeladas.")

show_layers(base_model)

# Descongelando ultimas camadas do modelo
unfreeze_base_model("block5")

# Compila o modelo para fine-tuning com uma taxa de aprendizado menor e funcdo de perda SparseCategoricalCrossentropy

model . compile(
optimizer=keras.optimizers.Adam(le-5), # Usa o otimizador Adam com uma taxa de aprendizado menor
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Usa entropia cruzada esparsa categérica como funcdo de perda
metrics=[keras.metrics.SparseCategoricalAccuracy (name="acc")] # Monitora a acurdcia categérica esparsa (corrigido para 3 classes)

)

# Define o callback ReducelROnPlateau para fine-tuning
reduce_lr_ft = tf.keras.callbacks.ReducelROnPlateau(
monitor="val_loss', # Monitora a perda de validacao
factor=0.2, # Reduz a taxa de aprendizado por um fator de 0.2
patience=3, # Numero de épocas sem melhora
min_lr=le-8 # Limite inferior para a taxa de aprendizado

)

# Define o callback ModelCheckpoint para fine-tuning
checkpoint_callback_ft = tf.keras.callbacks.ModelCheckpoint(
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filepath="fine_tuned_best_model.keras', # Caminho para salvar o melhor modelo
monitor="val_loss', # Monitora a perda de validacao

save_best_only=True, # Salva apenas o melhor modelo

mode="min', # Salva quando a perda de validacao for minima

verbose=1 # Exibe mensagens ao salvar

# Define o callback EarlyStopping para fine-tuning

early_stopping_ft = tf.keras.callbacks.EarlyStopping(
monitor="val_loss',
patience=8, # Paciéncia maior para dar chance ao ReducelROnPlateau
verbose=1,
restore_best_weights=True # Essencial!

# Realiza o fine-tuning do modelo

history_fine = model.fit(train_ds, validation_data=val_ds,
epochs=history.epoch[-1] + FINAL_EPOCHS, # Treina por épocas adicionais

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8
Epoch
8/8

b1]

8/8

initial e

)

blockég_se_reduce
blockég_se_expand
blockég_se_excite
blockég_project_conv
blockég_project_bn

blockég_drop
blockég_add

block6h_expand_conv
block6h_expand_bn

block6h_expand_activation True
blockéh_dwconv2

blockéh_bn

block6h_activation
block6h_se_squeeze
block6h_se_reshape
blockéh_se_reduce
block6h_se_expand
block6h_se_excite
block6h_project_conv
block6h_project_bn

blockéh_drop
block6h_add
‘top_conv
top_bn

top_activation

25/32
25: val_loss
26/32
26: val_loss
27/32
27: val_loss
28/32
28: val_loss
29/32
29: val_loss
30/32
30: val_loss
31/32
31: val_loss

32/32

Epoch 32: val_loss improved

os
improved

epoch=history.epoch[-1], # Inicia a partir da dltima época do treinamento anterior
callbacks=[reduce_lr_ft, checkpoint_callback_ft, early_stopping_ft] # Usa os callbacks definidos

True
True
True
True
True
True
True
True
True

True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

84ms/step - acc: 0.9896 - loss: 0.0214
from inf to 0.08047, saving model to fine_tuned_best_model.keras

19s 681ms/step - acc: 0.9890 - loss: 0.0225 - val_acc: 0.9726 - val_loss: 0.0805 - learning_rate: 1.0000

os
improved
2s

os
improved
3s

os
improved
2s

es
improved
3s

os
improved
2s

o
improved
2s

4s

88ms/step - acc: 0.9753 - loss: 0.0542
from 0.68047 to 0.07907, saving model to fine_tuned_best_model.keras

326ms/step - acc: 0.9767 - loss: 0.0516 - val_acc: 0.9726 - val_loss:

152ms/step - acc: ©.9965 - loss: 0.0088
from 0.07907 to 0.07787, saving model to fine_tuned_best_model.keras

356ms/step - acc: 0.9965 - loss: 0.0094 - val_acc: 0.9726 - val_loss:

88ms/step - acc: 0.9799 - loss: 0.08590
from 0.07787 to 0.07683, saving model to fine_tuned_best_model.keras

243ms/step - acc: 0.9808 - loss: 0.8562 - val_acc: 0.9726 - val_loss:

86ms/step - acc: 0.9920 - loss: 0.0211
from 0.07683 to 0.07591, saving model to fine_tuned_best_model.keras

250ms/step - acc: 0.9916 - loss: 0.0215 - val_acc: 0.9726 - val_loss:

91ms/step - acc: 0.9933 - loss: 0.0238
from 0.07591 to 0.07505, saving model to fine_tuned_best_model.keras

243ms/step - acc: 0.9936 - loss: 0.0236 - val_acc: 0.9726 - val_loss:

93ms/step - acc: ©.9923 - loss: 0.8226
from 0.07505 to 0.07436, saving model to fine_tuned_best_model.keras

241ms/step - acc: 0.9918 - loss: 0.0228 - val_acc: 0.9726 - val_loss:

145ms/step - acc: 0.9714 - loss: 0.0477
from 0.07436 to 0.07362, saving model to fine_tuned_best_model.keras

372ms/step - acc: ©.9715 - loss: 0.0478 - val_acc: 0.9726 - val_loss:

Restorine model weishts from the end of the best enoch: 37.
<

0.0791

0.0779

0.0768

0.0759

0.0751

0.0744

0.0736

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

learning_rate:

1.0000e

1.0000e

1.0000e

1.0000e

1.0000e

1.0000e

1.0000e
v

# Imprime o ultimo valor de cada métrica do histérico de fine-tuning
history_fine_dict = history_fine.history

for key, values in history_ fine_dict.items():
print(f"{key}: {values[-1]}") # Exibindo o Gltimo valor de cada métrica
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3 acc: 0.9724409580230713
loss: 0.04905371740460396
val_acc: 0.9726027250289917
val_loss: 0.87361606508493423
learning_rate: 9.999999747378752e-06

# Plota os graficos de perda e acuracia de treino e validacdo para o fine-tuning
import matplotlib.pyplot as plt

# Extrai os dados de perda e acurdcia do histérico de fine-tuning
loss = history_fine_dict['loss']

val_loss = history_fine_dict[‘val_loss']

accuracy = history_fine_dict.get('acc')

val_accuracy = history_fine_dict.get('val_acc')

# Cria o grafico de perda
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)

plt.plot(loss, label='Training Loss")
plt.plot(val_loss, label="Validation Loss')
plt.title( Training and Validation Loss')
plt.xlabel( " Epochs’)

plt.ylabel('Loss")

plt.legend()

ot

# Cria o grafico de acuradcia, se disponivel

if accuracy and val_accuracy:
plt.subplot(l, 2, 2)
plt.plot(accuracy, label='Training Accuracy')
plt.plot(val_accuracy, label='Validation Accuracy')
plt.title( 'Training and Validation Accuracy')
plt.xlabel( 'Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()
= Training and Validation Loss Training and Validation Accuracy
0.08 4
\ 0.995
0.07
0.990 1
0.06 1
>
g 0051 @ 0985 —— Training Accuracy
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<
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0.980 4
0.03 4
0.975 4
0.02 — Training Loss
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0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
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# Carrega melhor apés o fine tunning
best_model = load_best_model('fine_tuned_best_model.keras")

# Carrega uma imagem, a pré-processa e faz uma predicdo utilizando o modelo treinado
img = keras.utils.load_img("tb_in.jpg", target_size=IMAGE_SIZE) # Carrega a imagem e a redimensiona
plt.imshow(img) # Exibe a imagem

img_array = tf.keras.preprocessing.image.img_to_array(img) # Converte a imagem para um array NumPy
img_array = tf.expand_dims(img_array, @) # Adiciona uma dimensdo de lote

predictions = best_model.predict(img_array) # Realiza a predicdo
index = np.argmax(predictions) # Obtém o indice da classe predita
print("Class:", LABELS_CLS[index]) # Imprime o rétulo da classe predita
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# Avalia o desempenho do modelo no conjunto de dados de teste

results = best_model.evaluate(test_ds)

print(f"Loss: {results[@]}") # Imprime a perda no conjunto de teste
print(f"Accuracy: {results[1]}") # Imprime a acurdcia no conjunto de teste

2/2 —————————— 4s 552ms/step - acc: 0.9251 - loss: ©.1894
Loss: ©.208204779505729675
Accuracy: ©.9189189076423645
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APENDICE B

//Dependéncia do Tensorflow para classificacdo
implementation 'org.tensorflow:tensorflow-lite:+'
implementation 'org.tensorflow:tensorflow-lite-support:+'

/ Constantes/Variaveis Importante
private const val pathModel: String = "model/model_detection_triatominies_float32.tflite"”
private const val THRESHOLD: Float = @.7f1
private const val IMAGE_RESIZE: Int = 224
var result: MutableList<String> = ArrayList()

fun initClassify(context: Context, bytes: ByteArray, user: User?, callback: (Boolean) -> Unit) {
// Executa a classificacao em uma thread de background
GlobalScope. launch(Dispatchers.I0) {
try {
// Limpando resultados antigos

result.clear()

// Convertendo a imagem em bytes para Bitmap

val bitmap: Bitmap = BitmapFactory.decodeByteArray(bytes, offset: 0, bytes.size)

// Classificacdo executada em background thread

class ifyclass(context , bitmap)

// Redimensiona e comprime a imagem antes de salvar
val compressedImageBytes = resizeAndCompressImage(bitmap)

// Volta para a main thread para executar operacdes de UI e Firebase
withContext(Dispatchers.main) {
saveImageStores(compressedImageBytes, user, context) { result ->
callback(result)

} catch (e: Exception) {
e.printStackTrace()
/4 Volta para a main thread para executar o callback
withContext(Dispatchers.Main) {
callback(false)




// Classifica uma imagem bitmap em miltiplas classes usando o modelo TFLite
private fun classifyMulticlass(context: Context, bitmap: Bitmap)} {
// Carrega o modelo previamente mapeado em memoria
val model = loadModelFile(context)
// Prée-processa a imagem para transformar no formato aceito pelo medelo (normalizacdo, redimensionamento etc.)
val input = preProcessImageClassify(bitmap)
// Cria o Interpretador do TensorFlow Lite com o modelo carregado
val interpreter = Interpreter(model)

// Ccria um array de saida para armazenar as previsces (1 linha, 3 classes)
val output = Array( size: 1) { FloatArray( size: 3) }

// Executa a inferéncia do modelo com o input e preenche o array de salda
interpreter.run(input, output)

/7 Obtém o array de previsdes da primeira (e dnica) amostra

val prediction = output[o]

// Encontra o valor maximo da previsdo, gque representa a classe mais provavel

val maxValue = prediction.maxOrNull() ?: throw IllegalArgumentException("Array is empty”)
// Se o valor maximo for menor que o limiar definido, considera que ndao ha previsdo confiavel

if(maxvValue < THRESHOLD) {

}

result.add{"u") // 'u' indicando "Niao identificadd" ou "unknown”
result.add("1.0") // valor padrdo
return

// Determina a classe correspondente ao valor maximo
when (prediction.toList().indexof(maxvalue)) {

}

@ —-> result.add("n") // Inseto nao Transmissor

1 -5 result.add("s") // Inseto Transmissor

else > { // €aso cala fora das classes conhecidas
result.add("u")
result.add("1.0")

// Adiciona o valor da confianca (probabilidade) ao resultado
result.add(maxvalue.toString())
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// Carrega o modelo TFLite a partir dos assets e mapeia em memoria para uso pelo TensorFlow Lite
AThrows(Exception::class)
private fun loadModelFile(context: Context): MappedByteBuffer i

// Abre o arquivo do modelo dentro da pasta "assets”
val fileDescriptor = context.assets.openFd{pathModel)

// Cria um FileInputStream a partir do descriteor do arquive
val inputStream = FileInputStream(fileDescriptor.fileDescriptor)

// Obtem o canal do arquive, necessario para mapear o arquive em memoria
val fileChannel = inputStream.channel

// Obtém o offset inicial do arquivo (posicao onde o modelo comega)
val startOffset = fileDescriptor.startOffset

/7 obtéem o tamanho declarado do arquivo
val declaredLength = fileDescriptor.declaredlLength

// Mapeia o arquivo em memoria (somente leitura) e retorna o MappedByteBuffer
return fileChannel.map(FileChannel.MapMode.READ ONLY, startoffset, declaredlLength)
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private fun preProcessImageClassify(bitmap: Bitmap): Array<Array<Array<FloatArray>>> ﬂ
// Redimensiona a imagem para o tamanho esperado pelo modelo (IMAGE RESIZE x IMAGE_RESIZE}
val resizedBitmap = bitmap.scale(IMAGE RESIZE, IMAGE RESIZE, filter: true)
// €ria o array de entrada para o modelo:
// Estrutura: [1 amostra][altura][largura][3 canais RGB]
val input = Array( size: 1) { Array(IMAGE_RESTIZE) { Array(IMAGE RESIZE) { FloatArray( size: 3) } } }
// Percorre cada pixel da imagem redimensionada
for (i in @ = wntil < IMAGE RESIZE) {
for (j in @ = wntil < IMAGE_RESIZE) {
// obtém o valor do pixel na pesigao (i, 7)
val pixel = resizedBitmap[i, j]
// Extrai os valores de vermelho, verde e azul do pixel
// e armazena no array de entrada do modelo
input[e][il[jl[e] Color.red(pixel).toFloat() // canal vermelho
input[@]1[i1[j1[1] = Color.green(pixel).toFloat() // canal verde
input[@]1[i][31[2] = color.blue(pixel).toFloat() // canal azul

// Retorna o array tridimensional pronto para passar ac interpretador TFLite
return input



