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RESUMO 
 

As relações humanas, independente do formato e dos seus níveis de organização e 

institucionalização, em geral, são observadas como um objeto distante da Matemática 

e de técnicas de entendimento que empregam algum nível de quantificação. Essa 

ideia de separação entre essas duas ciências nos motivou a buscar compreender 

como a Matemática poderia ser aproximada das Ciências Humanas. Neste trabalho, 

a partir do uso de Matrizes de Adjacência (Matemática Discreta), procuramos explorar 

o potencial dessa ferramenta para descrever e analisar interações entre indivíduos 

que acontecem de forma rotineira em redes sociais. Com isso, tivemos como objetivo 

com este estudo “abordar como o conceito de matrizes pode ser aplicado no estudo 

de redes sociais on-line e off-line”. Diante das dificuldades logísticas e éticas na 

execução de pesquisas com seres humanos, optamos por construir uma rede social 

artificial a partir do modelo de rede Erdős-Rényi, utilizando do software RStudio, 

obtendo-se, assim, uma relação entre indivíduos em redes sociais e por meio de 

métricas de centralidade descritoras da estrutura da rede, bem como da sua 

expressão em termos gráficos, pudemos fazer uma análise das relações entre os 

indivíduos desta rede. Como resultado, entendemos que a ideia de que a temática 

das redes sociais, enquanto experiência off-line ou on-line (mídias sociais), sendo um 

assunto em voga, possa ser empregada para motivar estudantes para a compreensão 

do tema matrizes e constituir juntamente com a Ciência da Computação um possível 

caminho para a compreensão deste conceito matemático e de suas aplicações em 

diferentes contextos. Compreendemos, também, como relações aparentemente 

aleatórias e caóticas como interações entre indivíduos em uma rede social podem ser, 

pelo menos em parte, compreendidas por meio da matemática. Ainda, intencionamos 

que este trabalho possa ser uma fonte de consulta para pessoas que, como nós, 

queríamos compreender como seria possível a aproximação entre dois ramos da 

ciência aparentemente disjuntos: as Ciências Humanas e as Ciências Exatas. 

 

Palavras-chave: matrizes (Matemática); redes sociais; simulação computacional; 

relações humanas. 

  



 
 

ABSTRACT 
 

Human relationships, regardless of their format and their levels of organisation and 

institutionalisation, are generally regarded as a domain far removed from Mathematics 

and from analytical techniques that involve some degree of quantification. This 

perceived separation between the two disciplines inspired us to investigate how 

Mathematics might be brought closer to the Humanities. In this study, by employing 

adjacency matrices (Discrete Mathematics), we set out to explore the potential of this 

tool for describing and analysing interactions between individuals that routinely occur 

within social networks. Consequently, our aim was to examine how the concept of 

matrices can be applied to the study of both online and offline social networks. Faced 

with the logistical and ethical challenges of conducting research with human subjects, 

we opted to construct a artificial social network based on the Erdős–Rényi model using 

RStudio. This approach allowed us to establish relationships among individuals in 

social networks and, through the use of centrality metrics to characterise the network’s 

structure alongside its graphical representation, to analyse the interactions between its 

members. As a result, we concluded that the subject of social networks—whether 

experienced offline or as online social media—being so topical, can be employed to 

engage students in understanding matrices and, in conjunction with Computer 

Science, can provide a pathway to grasp this mathematical concept and its 

applications across diverse contexts. We also demonstrated how interactions between 

individuals in a social network, which may appear random and chaotic, can at least 

partly be understood through mathematics. Moreover, we hope that this work will serve 

as a resource for those who, like us, wish to understand how to bridge two seemingly 

disparate branches of knowledge: the Humanities and the Exact Sciences. 

 

Keywords: matrices (Mathematics); social networks; computational simulation; human 

relationships. 
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1 INTRODUÇÃO 
 

Quando se fala em Matemática e dos seus campos de aplicação, costuma-se 

imaginá-la como uma ferramenta exclusiva das Ciências Naturais, das Engenharias, 

das Finanças, da Economia, ou seja, aplicada, em geral, às ciências exatas e não às 

ciências humanas. Ainda perdura na mente de pessoas que o comportamento 

humano é imprevisível, variável ao ponto de ser quase caótico e que não pode ser 

abarcado, pelo menos em parte, por modelos que repousam sob alicerces 

matemáticos, como relatam Wassermann e Faust (1994).  

Da mesma maneira que os animais aquáticos não percebem que estão imersos 

dentro d’água, parte das pessoas não percebem que muitos dos seus 

comportamentos, em especial para nós aqueles relativos à aproximação ou à rejeição 

para com os outros indivíduos, também possam ser estudados por padrões que 

podem ser matematicamente apreendidos. 

Essa forma de pensar que o comportamento humano pode ser em parte 

descrito e explicado com ferramentas matemáticas, nos motivou para a realização 

deste trabalho buscando compreender como a matemática poderia ser aplicada nas 

ciências humanas, em especial na descrição do comportamento entre indivíduos 

quando em interações em redes sociais. 

Assim, determinamos como questão de pesquisa: em que medida as 

interações cotidianas entre as pessoas podem ser abarcadas por um modelo 

matemático?  

Para responder a tal questionamento traçamos como objetivo deste trabalho 

“abordar como o conceito de matrizes pode ser aplicado no estudo de redes sociais 

on-line e off-line”. 

Segundo Turner (1999), o uso da Matemática como suporte para a 

compreensão de fenômenos sociais remonta ao século XIX, no momento de criação 

e institucionalização das modernas Ciências Sociais (Antropologia, Ciência Política, 

Economia, Sociologia, etc.), quando muitos dos países europeus estavam passando 

por processos de industrialização (a Primeira Revolução Industrial), crescente 

população urbana, transição para o mundo de alta tecnologia como temos nos dias 

atuais em comparação com o mundo tecnologicamente medieval, que existia até 

então; isso gerou uma mudança na quantidade de informações que se tinham sobre 

as sociedades daquele período. Com a consolidação dos Estados Europeus, mais e 
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mais informações eram geradas a respeito dos seus territórios e populações e, diante 

da rápida mudança social que fora observada, fez-se o seguinte questionamento: os 

dados numéricos sobre as populações poderiam ser organizados com o objetivo de 

construir explicações sobre o mundo social? Tal como a Astronomia utiliza dos dados 

dos movimentos dos corpos celestes para explicar o funcionamento do Universo, tal 

como a Geologia utiliza dos dados das rochas para tirar conclusões a respeito da 

origem da Terra, seria possível, com os dados advindos das populações humanas, 

construir uma “Física Social”? A resposta foi afirmativa. 

Turner (1999) nos relata que esse movimento na História do Pensamento teve 

a intenção não apenas de explicar o comportamento humano sob uma ótica científica, 

mas de obter princípios e “leis” de funcionamento da sociedade humana, tal como nas 

leis da física newtoniana, com o objetivo de ter bases mais sólidas para a execução 

de políticas públicas ou mesmo de se modificar a direção das mudanças sociais, como 

se fosse possível uma ação de engenharia social, cuja bases estariam alicerçadas 

nos padrões de comportamento coletivo invariante, passíveis de serem encontrados 

por meio da pesquisa empírica e de serem formalizados matematicamente 1. 

Teríamos, assim, uma:  

 descrição dos fenômenos sociais, utilizando de ferramentas matemáticas 

(estatística descritiva);  

 explicação dos fenômenos, encadeando as variáveis mais importantes 

(estatística inferencial);  

 uma possibilidade de predição, levando em conta os fatores mais importantes; 

e, com essas etapas estabelecidas, tornar-se-ia factível a intervenção sobre os 

fenômenos sociais considerados moralmente mais relevantes pela população 

(pobreza e criminalidade, por exemplo). 

De acordo com esses pontos alcança-se, assim, o momento da intervenção 

pública mediante uma prescrição de um grupo de técnicos especialistas. Deste modo, 

tem-se a intervenção pública como uma ação de engenharia social2. 

Segundo Ognyanova (2022) e Christakis (2010), a análise de Redes Sociais 

(SNA- Social Network Analysis, na sigla em inglês) tem crescido dentro da área das 

 
1 Um exemplo de organização cujo trabalho de pesquisa social que tem por objetivo a intervenção na 
sociedade é o Instituto Tavistock, em Londres, que pode ser consultado no endereço: 
Tavistock Institute of Human Relations 
2 Essa é uma descrição do Ciclo de Políticas Públicas, destacando os seus aspectos mais matemáticos. 
Para uma descrição abrangendo mais variáveis envolvidas nesse processo consulte Santos (2024). 

https://www.tavinstitute.org/
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Ciências Sociais a ponto de tornar-se um paradigma de “ciência normal”3. O campo 

de conhecimento das ciências sociais aponta para uma progressiva mudança na 

natureza da explicação científica social, partindo do ponto de vista circunscrito ao 

indivíduo para o ponto de vista relacional (indivíduos em conjunto), ou seja, partindo 

do indivíduo para as relações entre eles, como acontece nas redes sociais. Essa visão 

mais abrangente, do indivíduo e suas relações, é um ponto relevante para a 

explicação dos fenômenos sociais mais abrangentes em relação a conhecimentos 

focados apenas no indivíduo. 

Entendemos que a justificativa para a realização deste trabalho reside no 

sentido de ser mais uma fonte de informação sobre aplicações da matemática em 

domínios da realidade até recentemente inexplorados, talvez devido à inexistência de 

técnicas e tecnologias capazes de apreender os fenômenos sociais em seus mais 

variados aspectos. Como exemplo, na Biologia, o microscópio abriu as fronteiras para 

um campo de estudo até então inexistente; na Astronomia, o telescópio (inicialmente 

com Galileu Galilei), e posteriormente o radiotelescópio, cumpriram o papel de realizar 

uma mudança de paradigma oferecendo informações mais abrangentes sobre o 

universo até então explicado de forma mais empírica provocando, assim, uma 

revolução científica. Ainda de acordo com Ognyanova (2022) e Christakis (2010), a 

revolução científica nas Ciências Sociais está acontecendo por meio da confluência 

dos desenvolvimentos na Matemática e na Ciência da Computação com o advento de 

computadores com maior capacidade de processamento, que contribuem para 

explicar aspectos importantes do comportamento humano como, por exemplo, 

preferências de consumo e as relações sociais. 

No que se refere às relações sociais, com este trabalho tivemos como objetivo 

geral mostrar como a matemática, juntamente com a computação, pode explicar 

fenômenos de interações entre indivíduos. 

Para responder ao nosso questionamento e atingir nosso objetivo, 

estruturamos este trabalho em 5 seções (2 a 6). 

Na seção 2 apresentamos nossa revisão de literatura, trazendo autores que 

abordam como a matemática pode ser utilizada para explicar fenômenos do mundo 

social.  

 
3 A expressão “Ciência Normal” é originada no livro A Estrutura das Revoluções Científicas, de Thomas 
Kuhn (1998). A “Ciência Normal” nas Ciências Comportamentais significa a construção de explicações 
partindo unicamente dos indivíduos como a principal unidade de análise. 
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Na seção 3, intitulada de Considerações Matemáticas, enunciamos os 

fundamentos matemáticos que perpassam este trabalho. Abordamos conceitos 

concernentes às Matrizes bem como conceitos mais especificamente direcionados à 

sua aplicação em interações entre os indivíduos nas redes sociais.  

As métricas e equações utilizadas na análise de redes sociais são discutidas 

na seção 4, no qual apresentamos as principais métricas4 e as respectivas equações 

que são utilizadas para descrever e analisar uma rede social.  

Os procedimentos metodológicos que adotamos para o desenvolvimento deste 

estudo são apresentados na seção 5. Nele, expomos como a pesquisa foi delineada. 

Na seção 6 – Análise de Redes Sociais Exemplificada – fazemos a análise das 

relações nas redes sociais a partir de uma rede social artificial, com as suas métricas, 

significados e os gráficos relacionados a este tipo de análise.  

Por fim, tecemos nossas Considerações Finais respondendo ao nosso 

questionamento e trazemos as conclusões às quais chegamos com este estudo.  

Consideramos nosso texto como elemento na área de Matemática Aplicada, 

em particular da Matemática Discreta, dentro do tópico das Matrizes e, sendo assim, 

apesar de importante, será deixado em segundo plano discussões históricas mais 

detalhadas sobre a institucionalização das Ciências Sociais e das aplicações 

matemáticas dentro deste contexto.  

Para iniciar nosso trabalho, fizemos uma revisão de literatura que é discutida 

na seção a seguir. 

  

 

 

 

 

 

 

 
 

 
4Segundo o site Aprender Estatística Fácil: “Métricas são medidas quantitativas utilizadas para avaliar 
o desempenho de um processo, atividade ou resultado “. Um exemplo de métrica são os indicadores 
sociais utilizados para avaliar a qualidade de vida de uma população, tal como o IDH (Índice de 
Desenvolvimento Humano) ou o Coeficiente de Gini (empregado para se medir a desigualdade de 
rendimentos) (Disponível em: O que é: Métricas Estatísticas - Definição e Importância. Acesso em: 05 
mai. 2025.). 

https://estatisticafacil.org/glossario/o-que-e-metricas-definicao-e-importancia/
https://estatisticafacil.org/glossario/o-que-e-metricas-estatisticas-definicao-e-importancia/#:~:text=M%C3%A9tricas%20estat%C3%ADsticas%20s%C3%A3o%20ferramentas%20fundamentais,a%20tomada%20de%20decis%C3%B5es%20informadas
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2 REVISÃO DE LITERATURA 
 

Em nossas buscas, encontramos que o uso da Matemática para a 

compreensão dos fenômenos sobre o mundo social e político remonta ao século XVIII 

com Condorcet (Santos, 2023) em seu famoso Paradoxo de Condorcet, no qual é 

discutida a disjunção entre as preferências individuais consistentes (escalonadas por 

ordem de importância) e as preferências e decisões tomadas pelo grupo, muitas vezes 

divergentes daquelas observadas no nível dos indivíduos.     

Para o nosso trabalho, elegemos alguns autores posteriores a Condorcet, que 

têm ideias similares, no sentido de buscar explicações de natureza quantitativa para 

os fenômenos do mundo social onde é possível e válido o emprego de modelagem 

matemática. Ao longo dos séculos seguintes, e até o presente momento, há autores 

como John Nash, Kenneth Arrow, Raymond Boudon, Duncan Watts, dentre outros, 

que abordaram o assunto e, desses, destacamos aqueles de maior relevância para 

este trabalho. 

Durkheim (2001) utilizou de métodos quantitativos para estudar os fatos 

sociais, considerando-os como "coisas" que poderiam ser analisadas 

estatisticamente; ao comparar as taxas de suicídios entre diferentes grupos sociais e 

regiões ele buscou encontrar padrões e correlações que permitiriam a construção de 

uma explicação científica social que atendesse aos requisitos do método científico. 

Arrow (1951), em seu trabalho no campo da Teoria dos Jogos, que tem 

aplicações nas ciências sociais, especialmente na economia, criou uma modelagem 

matemática para explicar os pontos de equilíbrio em mercados onde há concorrência, 

integrando a matemática à análise econômica. Em seu conhecido Teorema da 

Impossibilidade, ele demonstra que é impossível termos um sistema de votação justo 

em que haja a perfeita conversão das preferências individuais agregadas em 

resultados coletivos ranqueados sem ao menos não ferir os critérios de 1) Não-

ditadura (cada indivíduo deverá ter igual nível de poder, sem a possibilidade de 

individualmente alterar o resultado final); 2) Unanimidade (eficiência de Pareto), se 

todos têm uma preferência a outra, essa deverá ser a escolha coletiva (Se A tem 80%, 

B deverá ter 20% e a decisão coletiva será A); 3) Independência de Alternativas 

Irrelevantes: a ordem entre duas opções (A e B) não deverá ser influenciada pela 

presença ou ausência de outras alternativas. Qualquer que seja o cenário, se A foi a 

escolha de todos sobre B, A deverá continuar a ser a escolha coletiva, 



17 
 

independentemente da existência de C, D, ou E...; 4) Domínio Irrestrito: o sistema de 

votação deverá funcionar para qualquer conjunto de preferências individuais (que fora 

demonstrado pouco provável que esse funcionamento coerente aconteça, pelo já 

mencionado Paradoxo de Condorcet). 

Simon (1957), com o uso de métodos matemáticos e computacionais para 

estudar processos de tomada de decisão e comportamento humano; introduziu o 

conceito de racionalidade limitada, indicando que os indivíduos tomam decisões com 

base em informações incompletas, sob a condição de limitada capacidade de 

processamento de informações.  

Nash (1950), com suas contribuições à teoria dos jogos, mostrou como a 

matemática pode ser utilizada para entender interações estratégicas em contextos 

sociais. No seu conceito de Equilíbrio de Nash ele demonstra que um jogador, numa 

interação estratégica, não pode mudar a sua posição dado que os outros jogadores 

não mudarão as suas posições também. Suas ideias são usadas em áreas como a 

Política, Economia, Negócios e Relações Internacionais. 

Lazarsfeld (2016), com seus trabalhos em metodologia de pesquisa social, na 

modelagem matemática de fenômenos não diretamente observáveis nos dados 

estatísticos de uma sociedade observou, na análise estatística desses dados, que a 

variabilidade conjunta de um bloco de variáveis tem por causa fatores ocultos, que 

embora não diretamente apreensíveis, podem ser estimados com ferramentas 

matemáticas. Ele foi um dos pioneiros na utilização de modelos matemáticos para 

explicar o comportamento dos consumidores e do emprego de estatística avançada 

(inferencial) para estudar as correlações e padrões nos dados sociais. 

Boudon (1974), com a utilização de modelos matemáticos para estudar a 

sociologia estrutural e a teoria da escolha racional, propôs a ideia de mecanismos 

sociais na qual as características individuais e estruturais (coletivas) se coadunam em 

sequências causais, originando os fenômenos sociais que observamos no dia a dia 

(desigualdade social, modas, criminalidade etc.) e, mais recentemente, com Watts 

(2003) com a aplicação de métodos matemáticos e computacionais para estudar 

redes sociais e a propagação de informações. Este autor criou o modelo Watts-

Strogatz, em colaboração como físico Steven Strogatz, Duncan Watts desenvolveu o 

modelo de "Mundos Pequenos" (Small-World Networks) explicando como as redes 

sociais e sistemas complexos podem possuir, internamente, um alto nível de 
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conectividade mesmo com o fato de os seus links diretos (arestas) entre os vértices 

(indivíduos) serem poucos. 

Um dos elementos norteadores deste trabalho teve como suporte as ideias de 

Smith apud Boudon (1995) que se refere à noção de que a sociedade “emerge”, 

“acontece”, estrutura-se, hierarquiza-se e se mantém ao longo do tempo por meio das 

relações estáveis mantidas entre os indivíduos; relações possuidoras de 

características que podem ser apreendidas e modeladas pela matemática, 

características essas que procuramos discutir neste trabalho.  

Para fazer tais discussões, nos amparamos em conceitos matemáticos formais 

sobre matrizes apontados por autores como Giovani e Bonjorno (2000, p. 56) e Iezzi 

e Hassan (1977) e, para a apresentação das métricas utilizadas na análise da rede 

social artificial, nos amparamos em Digiampietri (2024) e Wassermann e Faust (1994). 

Sendo este um trabalho produzido sob os auspícios de um programa de Pós-

Graduação em Matemática, a sua elaboração deu-se dentro do campo disciplinar 

matemático, para sermos mais claros, dentro da Matemática Discreta, na área de 

Matrizes, buscando aplicá-las a outros domínios da realidade como a descrição e a 

explicação do comportamento humano, na qual é comum que se pense que as 

ferramentas da matemática não encontrariam qualquer aplicação. 

Tendo como suporte os autores mencionados, no que segue abordamos os 

conceitos matemáticos que utilizamos para a realização deste trabalho. 
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3 CONSIDERAÇÕES MATEMÁTICAS 
 

Nesta seção, apresentamos conceitos matemáticos concernentes a matrizes, 

tema que permeia este trabalho. Em um primeiro momento apontamos ideias sobre 

matrizes, sua definição, suas representações e alguns tipos específicos de matrizes. 

Em um segundo momento descrevemos matrizes e alguns elementos 

especificamente direcionados ao tema de interesse deste estudo, qual seja, a 

aplicação de matrizes no estudo de redes sociais.  

Sendo assim, antes que pensemos em matrizes enquanto um conceito 

matemático que pode ser aplicado em uma extensa variedade de domínios da 

realidade - no nosso caso específico, no campo das interações em redes sociais-, 

entendemos ser importante que seja estabelecida a sua definição formal, 

complementada por alguns tipos de matrizes que também são empregados na análise 

de redes sociais. 

 

3.1 MATRIZES 

 

3.1.1 Definição de Matriz 
 

Matrizes são “tabelas retangulares utilizadas para organizar dados numéricos” 

(Giovanni; Bonjorno, 2000, p. 56). 

Nas matrizes esses dados numéricos estão dispostos em filas horizontais 

(linhas) e em filas verticais (colunas). Cada número presente na matriz é denominado 

“elemento da matriz”.  

Genericamente, dados dois números naturais e não nulos 𝑚 e 𝑛, chama-se 

matriz 𝑚 × 𝑛 (dizemos que temos uma matriz do tipo 𝑚 por 𝑛) toda tabela 𝑀 formada 

por números reais distribuídos em 𝑚 linhas e 𝑛 colunas. De acordo com Iezzi e Hassan 

(1977), esta é a noção mais elementar que podemos ter sobre as matrizes. 

Numa matriz cada elemento ocupa uma posição definida por sua linha e por 

sua coluna, nessa ordem. Sendo assim, em uma matriz qualquer denotada por 𝐴, 

cada elemento é representado genericamente por 𝑎௜௝, no qual o índice 𝑖 representa o 

número da linha na qual o elemento se encontra e o índice 𝑗 representa o número da 

coluna na qual esse mesmo elemento se posiciona, informando a localização exata 

de um elemento 𝑎௜௝ na matriz. 
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Convencionou-se que as linhas sejam numeradas de cima para baixo (de 1 a 

𝑚) e que as colunas sejam numeradas da esquerda para a direita (de 1 a 𝑛). 

Genericamente, uma matriz  𝑚 × 𝑛 é representada da seguinte forma: 

 

𝐴 =

⎝

⎜
⎛

𝑎ଵଵ     𝑎ଵଶ     𝑎ଵଷ     …     𝑎ଵ௡
𝑎ଶଵ     𝑎ଶଶ     𝑎ଶଷ     …     𝑎ଶ௡

  .           .          .      …       .  
.           .          .      …      .

𝑎௠ଵ     𝑎௠ଶ     𝑎௠ଷ     …     𝑎௠௡⎠

⎟
⎞

 𝑐𝑜𝑚 𝑚, 𝑛 ∈ ℕ∗5 

 

Observe que a ordem em que aparecem os índices 𝑖 e 𝑗 é crucial visto que em 

uma matriz 𝑎ଶଷ representa o elemento que está na segunda linha e na terceira coluna, 

enquanto 𝑎ଷଶ indica o elemento que está na terceira linha e na segunda coluna. 

De forma abreviada podemos representar uma matriz 𝐴 como: 

 

𝐴 = ൫𝑎௜௝൯
௠×௡

 

 

Antes de iniciar o assunto sobre matrizes, Giovanni e Bonjorno (2000) expõem 

um problema em seu livro que utilizamos aqui como exemplo. 

 
Exemplo 1 

A tabela a seguir mostra o consumo mensal, em quilogramas, de quatro 

alimentos básicos, durante um trimestre, por uma família (Giovanni, Bonjorno, 

2000, p. 55). 

 

Tabela 1 - Consumo mensal, em kg, de quatro alimentos por uma família  

em um trimestre 
                    

 

 

 

 

 
5 Em geral, os elementos de uma matriz estão dispostos entre parênteses; porém, podemos encontrar 
outras representações com os elementos da matriz colocados entre colchetes [ ] ou entre barras 
duplas ‖ ‖ 

 ABRIL MAIO JUNHO 
Arroz 10 8 9 
Feijão 4 5 6 
Carne 5 7 10 
Legumes 12 11 6 

 Fonte: Giovanni; Bonjorno (2000, p.55). 
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A tabela acima pode ser representada por uma matriz do tipo 4 × 3 (4 linhas 

por 3 colunas) da seguinte forma: 
 

ቌ
10 8     9
4 5     6

   5      7     10
 12   11    6

ቍ 

 

Para determinar, por exemplo, a quantidade de carne consumida por essa 

família no mês de maio devemos localizar o elemento que está na terceira linha e na 

segunda coluna, ou seja, temos  𝑎ଷଶ = 7.  

Observe que cada elemento exposto nesta matriz tem um significado bem 

definido, como assim também podemos encontrar em vários ramos da ciência nos 

quais as matrizes podem ser aplicadas.   

No que segue, apontamos alguns tipos específicos de matrizes denominando-

as por 𝐴. 

 

3.1.2 Matriz quadrada 
 

Uma matriz 𝑚 × 𝑛 é dita quadrada quando o número de linhas dessa matriz é 

igual ao número de colunas. Como 𝑚 = 𝑛, dizemos que a matriz é do tipo 𝑛 × 𝑛 ou 

que é quadrada de ordem 𝑛. 

A seguir representamos de forma genérica uma matriz quadrada de ordem 4: 
 

𝐴 = ൦

𝑎ଵଵ    𝑎ଵଶ    𝑎ଵଷ    𝑎ଵସ
𝑎ଶଵ    𝑎ଶଶ    𝑎ଶଷ    𝑎ଶସ
𝑎ଷଵ    𝑎ଷଶ    𝑎ଷଷ    𝑎ଷସ
𝑎ସଵ    𝑎ସଶ    𝑎ସଷ    𝑎ସସ

൪ 

 

É fato que existem outros assuntos importantes sobre matrizes como, por 

exemplo, algumas matrizes específicas, igualdade de matrizes, matrizes inversas e 

operações com matrizes; no entanto, não são de interesse para este estudo. Por isso, 

não os abordaremos. 

Expostos os conceitos matemáticos concernentes às matrizes que são de 

nosso interesse, no que segue, abordamos algumas definições e alguns conceitos 
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sobre matrizes especificamente direcionados ao estudo de redes sociais e que 

utilizaremos no decorrer deste trabalho. 

 

3.2 CONCEITOS CONCERNENTES A MATRIZES APLICADAS ÀS REDES 
SOCIAIS 

 

Neste tópico, apresentamos alguns conceitos introdutórios relacionados à 

análise de redes sociais tais como grafos, nós, arestas e matrizes. 

  A maioria desses pontos que abordaremos têm como referência as ideias de 

Wassermann e Faust (1994). 

 

3.2.1 Grafos 
 

Grafos são estruturas matemáticas ou modelos matemáticos que permitem 

codificar os relacionamentos entre pares de objetos. Os objetos são os vértices do 

grafo, também conhecidos como nós, e as conexões entre os objetos são as arestas, 

como define Digiampietri (2024). 

 

Exemplo 2 
Considere uma pequena rede social formada por 4 indivíduos:  

 

𝐴 é amigo de 𝐵 e 𝐷 

𝐵 é amigo de 𝐴 e 𝐶 

𝐶 é amigo de 𝐵 

𝐷 é amigo de 𝐴 

 

Na Figura 1, representamos as relações entre os indivíduos 𝐴, 𝐵, 𝐶 e 𝐷 na forma 

de um grafo sendo que os indivíduos 𝐴, 𝐵, 𝐶 e 𝐷 são os nós e as conexões entre eles 

são as arestas: 
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Figura 1 - Grafo representativo do relacionamento entre os indivíduos A, B, C e D 
 

 

 

  

 

 C 

 

 

 

3.2.1.1 Grafo direcionado 

 

De acordo com Digiampietri (2023), grafo direcionado é aquele no qual as 

relações (arestas) entre os indivíduos (vértices ou nós) têm um sentido definido. Por 

exemplo: numa rede social6 on-line, ao estilo do Instagram, A pode seguir B, mas B 

pode não seguir A. Nas redes sociais off-line das relações do dia a dia, em uma 

referida entrevista na qual indivíduos deverão citar 9 de seus amigos, uma pessoa A 

poderá citar B como uma referência conhecida em sua lista de amigos, mas B poderá 

não citar A em sua lista de amigos. 

 

3.2.1.2 Grafo não direcionado 

 

Segundo Digiampietri (2023), grafo não direcionado é aquele no qual as 

relações (arestas) entre os indivíduos não têm um sentido definido. As arestas 

(relações) não têm direção, o que significa que a relação entre os nós ou vértices 

(indivíduos) é simétrica, ou seja, é recíproca. Nas redes on-line, como o Facebook, 

por exemplo, para A seguir B, B tem que seguir A. No mundo off-line são as redes de 

amizade ou de colaboração científica, nas quais só existe uma relação se há a citação 

recíproca. 

 
6 Rede social: conjunto finito de atores ligados por relações de interdependência (Wassermann, 1994). 
“Redes sociais podem ser definidas como a intrincada teia de relações sociais que os indivíduos 
formam uns com os outros. Essas relações podem se basear em diversos fatores, como laços 
familiares, amizades, conexões profissionais ou até mesmo interações virtuais por meio de plataformas 
online. As redes sociais não se limitam a indivíduos; elas também podem abranger entidades maiores, 
como organizações, comunidades ou até mesmo sociedades inteiras.". Disponível em: Understanding 
Social Networks in Sociology, acesso em 7 de outubro de 2025.  

Fonte: do autor, 2025. 

           Nós (Nodes)/Vértices: 
Indivíduos A, B, C e D 

       Arestas 
(Edges)/Links: interações 

entre os indivíduos 

 
  B 

𝐴 

  D 

 
 

 

https://easysociology.com/general-sociology/understanding-social-networks-in-sociology/
https://easysociology.com/general-sociology/understanding-social-networks-in-sociology/
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3.2.2 Matriz de Adjacência7 

A matriz de adjacência é uma representação matemática comum utilizada na 

análise de redes sociais em ciências sociais. Esta matriz descreve a estrutura da rede 

social em termos de conexões entre os nós (ou vértices) da rede. Em uma rede social, 

os nós podem representar indivíduos ou entidades, e as conexões entre eles podem 

representar relações sociais, como amizades, colaborações, interações etc. 

Assim, as redes formadas entre quaisquer elementos e representadas por 

grafos podem ser descritas por matrizes quadradas binárias constituídas por 0 (zero) 

e 1 (um) nas quais 1 representa a interação entre indivíduos e 0, a não interação. Essa 

representação é denominada matriz de adjacência. 
Em notação formal, uma matriz de adjacência é definida por: 

Seja 𝐺 um grafo não direcionado com 𝑛 nós. A matriz de adjacência 𝐴 de 𝐺 é uma 

matriz quadrada de tamanho 𝑛 × 𝑛, na qual o elemento 𝑎௜௝ é definido como: 

 

𝑎௜௝ = ൜ 1, 𝑠𝑒 𝑒𝑥𝑖𝑠𝑡𝑒 𝑎𝑟𝑒𝑠𝑡𝑎(𝑐𝑜𝑛𝑒𝑥ã𝑜)𝑒𝑛𝑡𝑟𝑒 𝑜𝑠 𝑛ó𝑠 𝑖 𝑒 𝑗
        0, 𝑠𝑒 𝑛ã𝑜 𝑒𝑥𝑖𝑠𝑡𝑒 𝑎𝑟𝑒𝑠𝑡𝑎(𝑐𝑜𝑛𝑒𝑥ã𝑜)𝑒𝑛𝑡𝑟𝑒 𝑜𝑠 𝑛ó𝑠 𝑖 𝑒 𝑗 

 

De acordo com o grafo da Figura 1, página 25, temos a matriz de adjacência, 

mostrada na Tabela 2: 

 
Tabela 2 - Matriz de adjacência das interações entre os indivíduos A, B, C e D 

 

 

 

 

 

     

 

 

Este exemplo representa a rede social onde os nós são os indivíduos 𝐴, 𝐵, 𝐶 e 

𝐷, e cada entrada na matriz indica se há uma conexão direta entre os nós 

 
7 Uma referência para o conceito de Matriz de Adjacência pode ser encontrada neste link: SciELO Brasil 
- Uma introdução à Ciência de Redes e Teoria de Grafos Uma introdução à Ciência de Redes e Teoria 
de Grafos. Acesso em 13 de outubro de 2025. 

 A B C D 

A 0 1 0 1 

B 1 0 1 0 

C 0 1 0 0 

D 1 0 0 0 

𝐴 = 

Fonte: do autor, 2025. 

https://www.scielo.br/j/rbef/a/GLGWtVsYZ7zysCBc3Xktf6b/?format=html&lang=pt
https://www.scielo.br/j/rbef/a/GLGWtVsYZ7zysCBc3Xktf6b/?format=html&lang=pt
https://www.scielo.br/j/rbef/a/GLGWtVsYZ7zysCBc3Xktf6b/?format=html&lang=pt
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correspondentes. Por exemplo, a entrada na linha 1, coluna 2 (ou seja, 𝑎ଵଶ) é 1, 

indicando que há uma conexão direta entre os nós (indivíduos) 𝐴 e 𝐵. No caso do 

elemento 𝑎ଷଵ = 0 da matriz de adjacência, significa que o indivíduo 𝐶 não se relaciona 

com o indivíduo 𝐴. 

A matriz de adjacência é a mais comum na pesquisa de análise de redes 

sociais, mas existem outros tipos de matriz que permitem que outras métricas possam 

ser calculadas. Ainda que não façam parte da discussão principal deste trabalho, 

esses tipos de matrizes serão abordados no que segue. Todos os tipos de matrizes 

mencionadas a seguir são variações da matriz de adjacência, apresentada por Higgins 

e Ribeiro (2018) e por Wassermann e Faust (1994), possuindo variações nos nomes 

e na notação de acordo com o objetivo particular de cada pesquisador8. 

 

3.2.3 Matriz de Incidência  
 

Essa matriz é utilizada para representar graficamente as conexões entre nós e 

arestas. As linhas da matriz representam os nós e as colunas, representam as arestas.  

Cada elemento indica se um nó está conectado a uma aresta específica. A 

matriz de incidência é especialmente útil em redes bipartidas, na qual há dois tipos 

diferentes de nós (por exemplo, usuários e grupos) e as conexões ocorrem entre 

esses dois tipos distintos. 

Uma matriz de incidência pode ser definida como: seja 𝐵 uma matriz de 

incidência para um grafo 𝐺, na qual 𝑏௜௝ = 1 se o vértice 𝑖 incidir na aresta 𝑗, 𝑏௜௝ = −1 

se o vértice 𝑖 for o fim da aresta 𝑗, e 𝑏௜௝ = 0 caso não haja relação, como mostrado no 

exemplo a seguir. 

 

 

 

 
8 Nestas referências estão os nomes para estes tipos de matrizes, que na realidade são variações da 
matriz de adjacência tais como: WASSERMAN, FAUST (1994). FREEMAN, Linton C. (1979). 
BONACICH, Phillip. (1987). HOLME, Petter; SARAMÄKI, Jari. (2012). KEMPE, David; KLEINBERG, 
Jon; TARDOS, Éva. (2003). PASTOR-SATORRAS, Romualdo; VESPIGNANI, Alessandro. (2001). 
KIVELÄ, Mikko et al. (2014).  
Como não tivemos a intenção de explorar as variações da matriz de adjacência, citamos os referidos 
autores e deixamos as referências completas na parte das referências bibliográficas deste trabalho. 
Nesta parte específica, as notações formais desses tipos de matriz contaram com a contribuição das 
inteligências artificiais generativas (ChatGPT e Microsoft Copilot) para os caracteres em texto 
matemático. A escrita, no entanto, foi do autor. 
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Exemplo 3. Matriz de incidência: 

 

቎
   1  1      0      0
−1   0      1       1
   0  − 1      1       0
    0       0      0  − 1

቏ 

 

Este tipo de matriz é empregado para modelar redes de interações nas quais 

as citações entre os indivíduos têm um direcionamento, ou seja, quando uma pessoa 

𝐴 é mencionada/seguida por uma outra 𝐵, mas esta  𝐴 não necessariamente 

menciona ou segue 𝐵. Um exemplo é uma rede social ao estilo do Instagram, na qual 

uma pessoa pode ser seguida por alguém, mas não há a simetria nesta relação; seguir 

não implica em ser seguido, neste caso podemos citar os influenciadores. Na notação 

de matriz de incidência, indicamos o número 1 quando há reciprocidade (simetria) e -

1, quando não há reciprocidade na relação e 0, quando não há nenhuma relação entre 

os vértices (indivíduos). 

 

3.2.4 Matriz de Similaridade 
 

Essas matrizes quantificam a semelhança ou a diferença entre os nós da rede 

com base em atributos, interesses, comportamentos ou outras características. A 

análise de similaridade pode ajudar a identificar grupos ou comunidades de nós que 

compartilham interesses ou características comuns. 

A matriz de similaridade pode ser definida como: seja 𝑆 uma matriz de 

similaridade para um conjunto de entidades 𝐸, na qual 𝑠௜௝ representa a similaridade 

entre as entidades 𝑖 e 𝑗. 

No exemplo que segue temos uma matriz de similaridade. 

 
Exemplo 4 
 Suponha que estamos comparando a similaridade entre perfis de usuários em 

uma rede social com base em características comuns, no caso consideraremos 

professores, técnicos administrativos e um grupo de alunos do IFPE campus 

Barreiros. 



27 
 

 Suponha que para a relação entre os perfis de usuários citados no exemplo 

obtemos a matriz de similaridade: 
 

቎
1  0,8       0,2

  0,8     1        0,6
0,2      0,6        1   

቏ 

 

Nesta matriz, se a nossa unidade de análise for o tipo de ator dentro da 

instituição educacional IFPE (Professores, Técnicos Administrativos e Alunos), iremos 

modelar o quanto determinado tipo de ator segue outro tipo de ator. Um professor que 

tivesse 10 contatos e um escore de 1 para a sua categoria e de 0 nas outras duas 

(Técnicos Administrativos e Alunos) significaria que todas as pessoas que ele segue 

também são professores. Se tivermos um score de 0,8 para determinada categoria, 

suponhamos para técnicos administrativos, significa que o indivíduo segue 80% de 

indivíduos que também são técnicos administrativos e 20% de indivíduos que são de 

outras categorias.  

 

3.2.5 Matriz de Centralidade 
 

A centralidade é uma medida que avalia a importância relativa de um nó dentro 

da rede. A matriz de centralidade atribui um valor a cada nó com base em critérios 

como a quantidade de conexões que possui ou a posição que ocupa na rede. A análise 

de centralidade ajuda a identificar nós influentes ou críticos na rede social. 

A matriz de centralidade pode ser definida da seguinte forma: seja 𝐶 uma matriz 

de centralidade para um grafo 𝐺, no qual 𝑐௜௝ representa a medida de centralidade do 

vértice 𝑖 em relação ao vértice 𝑗, ou seja, representa a quantidade de citações do 

vértice 𝑖 em relação ao vértice 𝑗. 

Uma matriz de centralidade pode ser originada de uma matriz de adjacência. Nela há 

a indicação dos vértices (indivíduos, nós) que têm a maior quantidade de citações. 

 
Exemplo 5 
 Numa rede formada por alunos de uma instituição, a matriz de centralidade 

indicaria qual ou quais desses alunos são os mais citados pelos seus pares. Um 
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indivíduo mais citado é um indivíduo mais conhecido, que teria o potencial de ser uma 

referência em opiniões, preferências e comportamentos. 

 
3.2.6 Matriz de Propagação de Informação 
 

Essa matriz é usada para modelar a propagação de informações, opiniões ou 

comportamentos ao longo da rede. Ela pode ser usada para prever como as 

informações se espalharão e quais nós (vértices) teremos maior impacto na 

disseminação. 

 Uma matriz de propagação e informação pode ser definida nestes termos: seja 

𝑃 uma matriz de propagação de informação para um grafo 𝐺, no qual 𝑝௜௝ representa a 

probabilidade de uma informação propagada de 𝑖 chegue a 𝑗. 

Em uma rede social, essa matriz pode ser construída considerando a 

probabilidade de uma postagem feita por um usuário 𝑖 seja vista por um usuário 𝑗. 

A matriz de propagação da informação também está relacionada com a matriz 

de adjacência, visto que quanto mais citado o indivíduo for, maior a probabilidade de 

propagação da informação se essa a passar por ele. 

 

Exemplo 6 
 Neste de tipo matriz seriam indicadas as probabilidades de uma opinião de um 

indivíduo ser vista por um outro indivíduo. Se essa matriz descreve uma rede aleatória, 

qualquer indivíduo tem igual probabilidade de acessar a opinião de qualquer outro 

indivíduo, porém em redes não-simuladas, on-line ou off-line, esses valores são 

diferentes para todos os indivíduos, dependendo da posição em que estes estão 

localizados dentro da rede. Posições mais centrais, incrementam essas 

probabilidades; posições mais periféricas, reduzem as probabilidades de visualização 

das informações. 

 

 3.2.7 Matriz de Interação Temporal  
 

Em redes sociais dinâmicas, para as quais as conexões e interações mudam 

ao longo do tempo, as matrizes de interação temporal registram quando e como as 

interações ocorreram. Isso pode ajudar a identificar tendências sazonais, eventos 

significativos ou mudanças na estrutura da rede. 
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 Para uma rede social, essa matriz pode representar a frequência ou 

intensidade das interações entre usuários ao longo do tempo, como mensagens 

trocadas, comentários feitos etc. 

Uma matriz de interação temporal registraria a permanência ou as mudanças 

nas trocas de informação ao longo do tempo. Também pode representar se a rede se 

mantém com poucas alterações ou se ela passa por alterações ao longo do tempo 

(diminuição ou aumento na quantidade de indivíduos).   

 
Exemplo 7 
 Considere as informações trocadas entre estudantes ao longo do ano. 

Entendemos que durante o período de avaliações a troca de informações bem como 

a variação na quantidade de indivíduos que acessam as informações são 

expressivamente maiores do que em outras épocas. Essas variações podem ser 

representadas por uma matriz de interação temporal. 

 Neste bloco dessa sessão apontamos os tipos de matrizes aplicadas às redes 

sociais baseadas nos tipos de interações entre indivíduos. No entanto, as interações 

nas redes sociais também podem ser analisadas por meio de métricas e equações, o 

que discutimos no que segue. 
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4 MÉTRICAS E EQUAÇÕES UTILIZADAS NA ANÁLISE DE REDES SOCIAIS 
 

 
Nesta seção exibimos algumas métricas utilizadas em análises de redes sociais 

e que serão a base de fundamentação teórica para o exemplo artificial que 

discutiremos na seção 6. 

Neste trabalho abordaremos três tipos de métricas: o Número de Dunbar, 

algumas das métricas locais e algumas métricas globais. 

 

4.1 NÚMERO DE DUNBAR 

 

Baseados em Barros e Herbert (2010), entendemos que a ideia em empregar 

a quantificação das relações humanas decorre dos limites da nossa racionalidade, em 

termos de capacidade de processamento de interações sociais, o que é explicado pelo 

“Número de Dunbar”, exigindo que usemos de um ponto de vista matemático para que 

tenhamos uma maior capacidade de entendimento do nosso mundo social.  

Dunbar (1992), ao estudar relações entre grupos humanos ao longo da história, 

percebeu que o tamanho médio de grupos coesos era em média em torno de 150 

indivíduos. Assim, para os seres humanos, o número de relações diretas entre 

indivíduos é em torno de 1509. A partir deste valor, as relações não são mais próximas 

e não se pode mais gerenciar de forma direta conectividades gerais que perpassam o 

grupo (idades, amizades, parentesco etc.); é necessário quantificações matemáticas 

para que seja possível investigar o universo social.  

Por exemplo: em um pequeno grupo de pessoas que se relacionam entre si, 

possivelmente é claro para todos qual a quantidade de indivíduos que estão em 

determinada faixa etária ou quem é parente direto de quem; no entanto, para analisar 

características de um conjunto de pessoas cuja quantidade não é gerenciável de 

forma direta, e que seriam caso este grupo fosse pequeno, é necessário utilizarmos 

instrumentos matemáticos para fazermos aferições sobre determinada característica 

da população. Um exemplo disso são os estudos realizados pelo Instituto Brasileiro 

de Geografia e Estatística (IBGE) para se determinar, por exemplo, o número de 

 
9 Para o artigo original de Robin Dunbar, clicar aqui: Neocortex size as a constraint on group size in 
primates - ScienceDirect. 

https://www.sciencedirect.com/science/article/abs/pii/004724849290081J
https://www.sciencedirect.com/science/article/abs/pii/004724849290081J
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pessoas que estão em determinada faixa etária e, para isso, é necessário a utilização 

de instrumentos matemáticos. 

De acordo com Stewart (2014), a Matemática representou (e representa) uma 

ampliação das capacidades humanas no entendimento do funcionamento do Mundo 

Natural (Astronomia, Física, Química etc.). No entanto, ela também pode ser utilizada 

para estudos na área social. Um exemplo disso é o Número de Dunbar. O conceito de 

Número de Dunbar indica que a mente humana tem limites quanto a capacidade de 

processamento de relações significativas. Além desse ponto é necessária a criação 

de Instituições para lidar com a impessoalidade e reduzir os custos de coordenar 

centenas de vontades humanas discordantes na execução de uma ação coletiva; além 

desse limite, na atividade científica, é necessário que usemos da Matemática como 

ferramenta descritiva e explicativa sobre o mundo de relações humanas que nos 

rodeia. 

Vale destacar que uma rede social pode ser analisada considerando as 

métricas relacionadas aos indivíduos (neste sentido, “métricas locais”), bem como no 

aspecto relacionado à rede como um todo (neste sentido, “métrica global”). 

Os conceitos abordados nas métricas a seguir foram baseados em Digiampietri 

(2023) e Arif (2015).  

  

4.2 MÉTRICAS LOCAIS 

 

As métricas locais quantificam características dos indivíduos dentro de uma 

rede social como, por exemplo, sua posição na rede. 

No contexto das métricas locais temos as medidas de centralidade que se 

referem à concentração de citações de um ou alguns indivíduos dentro de uma rede 

social. Assim, as medidas de centralidade têm por objetivo quantificar o quão central 

é a posição que o indivíduo ocupa na rede, ou seja, a centralidade está relacionada à 

importância, influência ou prestígio do indivíduo na rede. 

Por exemplo, um influenciador digital tem mais centralidade dos que os demais 

participantes de um grupo social ou em uma pesquisa eleitoral um candidato mais 

citado tem mais centralidade do que outro menos citado nesta mesma pesquisa.  
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4.2.1 Grau de Centralidade (𝑪𝐝𝐞𝐠10) 

 

O Grau de Centralidade está relacionado ao número de citações de um 

indivíduo dentro de uma rede social. 

É a mais simples de todas as medidas de centralidade e o seu valor para um 

dado nó em rede é o número de links incidentes nele, sendo utilizado para identificar 

os nós que têm o maior número de conexões na rede. Entretanto o Grau de 

Centralidade não considera o prestígio das arestas incidentes nos nós. 

Formalmente, para um grafo 𝐺 = (𝑉, 𝐸) (𝐺 = 𝑔𝑟𝑎𝑢 𝑑𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑑𝑎𝑑𝑒; 𝑉 =

𝑣é𝑟𝑡𝑖𝑐𝑒; 𝐸 = 𝑎𝑟𝑒𝑠𝑡𝑎 − em inglês edge), o grau de um nó ou vértice v, (v ∈ 𝑉) é 

expresso pela relação: 
 

𝐶஽(𝑣) = g(𝑣) 

 

na qual 𝐶 é a centralidade do grau 𝐷 em determinado vértice 𝑣, o que corresponde a 

de g(𝑣)  que é o número de arestas incidentes em um vértice 𝑣. 

Vale ressaltar que a letra “𝐷” nesta relação significa Grau (degree, em inglês); 

a expressão “arestas incidentes” significa a quantidade de citações para determinado 

indivíduo “𝑣” representado pelo vértice (nó). “𝐶஽(𝑣)” significa o “Grau de Centralidade 

do vértice 𝑣”.  

Um exemplo desta ideia são as citações que uma pessoa recebe em 

determinada comunidade, organização ou instituição. Os indivíduos mais citados são 

os indivíduos mais centrais, mais lembrados nas primeiras posições pelos integrantes 

daquele ambiente, quando abordados numa pesquisa de campo. 

Isso exemplifica que o Grau de Centralidade indica apenas o número de 

citações e não leva em consideração o prestígio destas citações. 

  

 

 

 

 

 
10 𝑪ୢୣ୥ : Grau (Degree-deg) de Centralidade. 



33 
 

4.2.2 Centralidade de Intermediação (𝑪𝐛𝐞𝐭11)  
 

 A Centralidade de Intermediação se relaciona à frequência com a qual um nó 

atua como intermediário. 

É uma métrica que avalia a habilidade de um nó (indivíduo) de se conectar aos 

círculos importantes da rede. Essa métrica mede o Grau de Centralidade de um vértice 

em relação às principais rotas pelas quais os fluxos da rede são estabelecidos. 

A função desta métrica é quantificar o quanto um indivíduo tem a capacidade 

de ser um intermediário entre as partes de maior prestígio dentro da rede. No caso 

das eleições universitárias seria uma medida do quanto um indivíduo poderia atuar 

como conexão (ponte) entre os círculos sociais de maior prestígio. 

Para determinar a Centralidade de Intermediação (Betweenness, em inglês, a 

letra 𝐵 na fórmula), utilizamos a relação: 

 

𝐶஻(𝑣) = ෍ 𝑠 ≠ 𝑣 ≠ 𝑡
𝜎௦௧(𝑣)

𝜎௦௧
 

 

Na qual: 

 

𝑠, 𝑣 e 𝑡 são vértices distintos e 𝑣 atua como intermediário entre 𝑠 e 𝑡. 

𝐶஻(𝑣) é a Centralidade de Intermediação do vértice 𝑣; 

𝜎௦௧(𝑣) é o número de caminhos entre os vértices 𝑠 e 𝑡 e que passam pelo vértice 𝑣; 

𝜎௦௧ é o número total de caminhos mais curtos entre os vértices 𝑠 e 𝑡. 

 

Para determinar a Centralidade de Intermediação, bem como para quantificar 

outras métricas, teríamos de o fazer para todos os vértices; no entanto, para o trabalho 

não ficar muito extenso, para nossos exemplos utilizaremos apenas um dos vértices, 

e o escolhido foi o vértice 3 (V3) de uma rede social hipotética composta por 5 

indivíduos, como mostra a Figura 2. 

 

 

 

 
11 𝑪ୠୣ୲: Grau de Centralidade de Intermediação (Betweenness-bet). 



34 
 

 

Figura 2 - Rede social hipotética constituída por 5 indivíduos em grafo  

não direcionado 

                               

                                                                                             

                                                                  

                                                                            

 

 

 

Neste caso, temos um grafo não-direcionado, na qual o indivíduo para ser 

seguindo tem que seguir um outro de volta (no mundo on-line, seria como o 

Facebook). Iremos observar a relação entre a quantidade de menores caminhos que 

há nesta rede, divididos pela quantidade de menores caminhos que passam pelo 

vértice (pessoa) que foi escolhido para ser investigado (V3). Quanto maior for a 

Centralidade de Intermediação, maior é a presença do vértice nos fluxos de 

informação da rede. 

Quantos caminhos passam por V3? Quantos caminhos não passam por V3? 

Qual é o total de caminhos da nossa rede social? 

 

Do vértice 1 ao vértice 4, passamos por V3 – Contamos 1 caminho. 

Do vértice 1 ao vértice 5, passamos por V3 – Contamos 1 caminho. 

Do vértice 2 ao vértice 4, passamos por V3 – Contamos 1 caminho. 

Do vértice 2 ao vértice 5, passamos por V3 – Contamos 1 caminho. 

 

Temos um total de 4 caminhos que passam pelo vértice V3. 

 

Do vértice 1 ao vértice 2, não passamos por V3 – Contamos 1 caminho. 

Do vértice 4 ao vértice 5, não passamos por V3 – Contamos 1 caminho. 

 

Temos o total de 2 caminhos que não passam por V3. 

Temos um total de 6 caminhos nesta nossa rede social. 

 

 

Fonte: do autor, 2025. 

𝑣5 

𝑣3 

𝑣1 

𝑣4 
𝑣2 
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Aplicando a fórmula com o foco em V3, temos o seguinte: 

 
 

𝐶஻(𝑣3) = ෍ 𝑠 ≠ 𝑣3 ≠ 𝑡
𝜎௦௧(𝑣3)

𝜎௦௧
 

 

𝐶஻(𝑣3) =
4(𝑄𝑢𝑎𝑛𝑡𝑖𝑑𝑎𝑑𝑒𝑑𝑒𝑐𝑎𝑚𝑖𝑛ℎ𝑜𝑠𝑞𝑢𝑒𝑝𝑎𝑠𝑠𝑎𝑚𝑝𝑜𝑟𝑉3)

6(𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑐𝑎𝑚𝑖𝑛ℎ𝑜𝑠𝑑𝑎𝑟𝑒𝑑𝑒𝑠𝑜𝑐𝑖𝑎𝑙) = 0,667 

 

Um total de dois terços de todos os menores caminhos passam por V3, o que 

aponta para um Coeficiente de Intermediação de aproximadamente 0,667, coeficiente 

esse considerado moderado para alto12. 

O coeficiente de Intermediação também pode ser determinado para grafos 

direcionados, como o mostrado na Figura 3. Para a mesma rede social de 5 indivíduos, 

sob o formato de grafo direcionado, seguir uma pessoa não significa que haja 

reciprocidade e ela siga de volta (no mundo on-line seria como o Instagram). 

 
Figura 3 - Rede social hipotética constituída por 5 indivíduos em grafo direcionado. 

 

 

                                    

                                                                                   

 
                                                         
 
 

Semelhante ao exemplo anterior, iremos observar a relação entre a quantidade 

de menores caminhos desta rede, divididos pela quantidade de menores caminhos 

que passam pelo vértice (pessoa) que foi escolhido para ser investigado (V3), com a 

regra de que serão consideradas apenas os caminhos que possuem direcionamento 

 
12 Em estatística, coeficientes entre 0 e 0,3 são classificados como fracos, em 0,5 é classificado como 
moderado e um coeficiente acima de 0,7 é considerado forte. Para maiores informações, consulte Lima 
(2021). 
  

Fonte: do autor, 2025. 

𝑣5 
𝑣3 

𝑣1 

𝑣4 

 
𝑣2 
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(aresta) para V3. Quanto maior for a Centralidade de Intermediação, maior é a 

presença do vértice nos fluxos de informação da rede. 

As mesmas perguntas devem ser respondidas: Quantos caminhos passam por 

V3? Quantos caminhos não passam por V3? Qual é o total de caminhos da nossa 

rede social? 

 

Do vértice 1 ao vértice 2, não passamos por V3 – Contamos 1 caminho. 

Do vértice 1 ao vértice 4, não passamos por V3 – Contamos 1 caminho. 

Do vértice 1 ao vértice 5, passamos por V3 – Contamos 1 caminho. 

Do vértice 2 ao vértice 1, não passamos por V3- Contamos 1 caminho. 

Do vértice 2 ao vértice 4, não passamos por V3 – Contamos 1 caminho. 

Do vértice 2 ao vértice 5, passamos por V3 – Contamos 1 caminho. 

Do vértice 4 ao vértice 1, não passamos por V3 – Contamos 1 caminho. 

Do vértice 4 ao vértice 2, não passamos por V3 – Contamos 1 caminho. 

Do vértice 4 ao vértice 5, não passamos por V3 – Contamos 1 caminho. 

Do vértice 5 ao vértice 1, não passamos por V3 – Contamos 1 caminho. 

Do vértice 5 ao vértice 2, não passamos por V3 – Contamos 1 caminho. 

Do vértice 5 ao vértice 4, não passamos por V3 – Contamos 1 caminho. 

 

Numa contagem de arestas (caminhos) para grafos direcionados, são 

contabilizados os caminhos que passam pelo vértice que escolhemos investigar e que 

estejam direcionados para ele. Os caminhos que poderíamos ter, caso o gráfico fosse 

não-direcionado, também entram no cálculo, como por exemplo, de V1 para V4, já 

que a fórmula trata sobre a relação entre os caminhos potenciais e os caminhos que 

de fato foram trilhados ao passar pelo indivíduo sob análise. 

Temos um total de 12 caminhos nesta rede de grafo direcionado. Dentro 

desses 12, temos 2 caminhos que passam por V3.  

Aplicando a relação, temos: 

 

𝐶஻(𝑣3) = ෍ 𝑠 ≠ 𝑣3 ≠ 𝑡
𝜎௦௧(𝑣3)

𝜎௦௧
 

 

𝐶஻(𝑣3) =
2(𝑄𝑢𝑎𝑛𝑡𝑖𝑑𝑎𝑑𝑒𝑑𝑒𝑐𝑎𝑚𝑖𝑛ℎ𝑜𝑠𝑑𝑖𝑟𝑒𝑐𝑖𝑜𝑛𝑎𝑑𝑜𝑠𝑞𝑢𝑒𝑝𝑎𝑠𝑠𝑎𝑚𝑝𝑜𝑟𝑉3)

12(𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑐𝑎𝑚𝑖𝑛ℎ𝑜𝑠𝑑𝑎𝑟𝑒𝑑𝑒𝑠𝑜𝑐𝑖𝑎𝑙) = 0,167 
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Um total de um sexto  ቀ ଶ
ଵଶ

= ଵ
଺
ቁ  de todos os menores caminhos passam por V3, 

e temos com isso um Coeficiente de Intermediação de aproximadamente 0,167; o que 

é considerado como fraco. Isso significa um menor poder de intermediar os principais 

fluxos de informação dentro da rede. 

 

4.2.3 Centralidade de Proximidade (𝑪𝐜𝐥𝐨13) 
 

Essa métrica mede a distância média entre um nó e todos os outros. 

O Grau de Centralidade de Proximidade (closeness em inglês) representa a 

habilidade de um indivíduo monitorar o fluxo de informação e enxergar o que está 

acontecendo na rede, como relata Martins (2016)14. 

A Centralidade de Proximidade em análise de redes sociais descreve os nós 

que estão conectados de tal forma que possam acessar outros nós na rede com mais 

facilidade. Isso é indicado pelo padrão de seus laços indiretos (arestas indiretas). 

  Para determinar a Centralidade de Proximidade somamos os caminhos mais 

curtos entre determinado nó e todos os outros nós da rede. 

Na prática, significa o grau de mobilidade de cada indivíduo dentro de uma 

rede, o quanto ele é capaz de acessar desde a pessoa mais central (aquela que é 

mais citada) até aquela que é mais periférica (aquelas menos citadas) desta rede. 

Em termos matemáticos, a Centralidade de Proximidade de um nó (𝑣) é dada pela 

relação: 
 

 

𝐶(𝑣) =
1

∑ 𝑑(𝑢, 𝑣)௨ஷ௩
 

 

𝑢 e 𝑣 são vértices distintos; 

𝐶(௩) é a Centralidade de Proximidade do nó 𝑣; 

𝑑(𝑢, 𝑣) é a distância (número de arestas entre os nós 𝑢 e 𝑣). 

 

 
13 𝑪clo: Grau de Centralidade de Proximidade (Closeness-clo). 
14 Para uma informação mais precisa, ver nas referências deste trabalho: “Mídias Sociais – Análise de 
Centralidade e Componentes”, Martins, 2016. 
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Para exemplificar essa métrica utilizaremos um ditado utilizado no Rio de 

Janeiro: “pessoa capaz de falar com o morro e com o asfalto”, ou seja, um indivíduo 

capaz de obter informações e/ou ser influenciado por variados círculos sociais, por 

estar numa posição relacional que o permite acessar tanto os nós mais centrais, 

quanto os nós mais à margem, dentro de determinada rede social. 

Como fora feito com as métricas descritas anteriormente, será apresentada 

uma quantificação da Centralidade de Proximidade, elaborada a partir do vértice (v3), 

numa hipotética rede social de 5 indivíduos. Nessa rede, será medido o quão próximo 

o indivíduo v3 está de todos os demais indivíduos da rede. Quantos caminhos(arestas) 

mais curtos existem entre determinado indivíduo (no caso, o nó de número 3) e todos 

os outros; quantas arestas são necessárias serem percorridas para que cada 

indivíduo possa ser alcançado. 

Assim, essa medida identifica os nós que estão mais próximos dos demais, 

possuindo maior capacidade de espalhar a informação. 

 

Figura 4 - Rede social hipotética constituída por 5 indivíduos em grafo  

não direcionado 

 

                               

                                                                                             

                                                                  

                                                                            

 

 

 

A seguir determinamos a Centralidade de Proximidade do vértice 3 (V3) em 

relação a todos os indivíduos desta rede. 

 

Do vértice 3 para o vértice 1 – Contamos 1 caminho. 

Do vértice 3 para o vértice 2 – Contamos 1 caminho. 

Do vértice 3 para o vértice 5 – Contamos 1 caminho. 

Do vértice 3 para o vértice 4 – Contamos 2 caminhos. 

 

Fonte: do autor, 2025. 

𝑣5 
𝑣3 

𝑣1 

𝑣4 𝑣2 
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Temos um total de 5 caminhos partindo do vértice 3 para todos os outros 

vértices desta rede social. 

 

Com a aplicação da fórmula: 

 

𝐶(𝑣3) =
1

∑ 𝑑(𝑢, 𝑣3)௨ஷ௩
 

 

 

𝑢 e 𝑣3 são vértices distintos; 

𝐶(௩ଷ) é a Centralidade de Proximidade do nó 𝑣3; 

𝑑(𝑢, 𝑣3) é a distância (número de arestas entre os nós 𝑢 e 𝑣3. 

 

 

𝐶(𝑣3) = ଵ
ଵାଵା଴ାଶାଵ 

 = 0,2 

 

 

Este valor (0,2) é a Centralidade de Proximidade do vértice 3 em relação a 

todos os vértices da rede.  

Quando a distância do vértice 3 para qualquer outro foi de uma aresta, 

contabilizamos 1, se foi de duas arestas, contabilizamos 2; colocamos 0 para 

representar a distância dele para ele mesmo. Efetuando a divisão de 1 pelo somatório 

dos números do denominador, temos a nossa Centralidade de Proximidade (0,2). 

Quando temos uma situação em que o grafo é desconexo, apresentando 

regiões onde não há qualquer caminho entre duas arestas, introduzimos a letra n 

(ficando n-1 no numerador), para representar o total de todos os vértices do grafo 

subtraído de 1.  

 

𝐶(𝑣) =
𝑁 − 1

∑ 𝑑(𝑢, 𝑣)௨ஷ௩
 

 

 

A Centralidade de Proximidade também pode ser determinada para um grafo 

não direcionado. 
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Figura 5 - Rede social hipotética constituída por 5 indivíduos em grafo direcionado 
 

 

                                                       

                                                                                   

 
                                                 
 

 

Considerando que o nosso foco é o vértice 3(v3), temos as seguintes relações 

nesta rede de 5 pessoas, dentro de um grado direcionado. 

 

Não há caminho do vértice 3 para o vértice 2.  

Não há caminho do vértice 3 para o vértice 1.  

Não há caminho do vértice 3 para o vértice 4. 

Há um caminho do vértice 2 para o vértice 5. Contamos 1 caminho (1 aresta). 

 

Como em relação a todos os outros vértices não há arestas, pois trata-se de 

um grafo direcionado, coloca-se para cada vértice o valor de 5, que é o número do 

total de vértices deste grafo; 0 para representar o vértice 3 e o valor de 1 que 

representa a ligação entre o vértice 3 e o vértice 5. 

Substituindo os valores destacados acima na fórmula, obtemos:  

 

𝐶(𝑣3) = ଵ
ହାହା଴ାଵାହ 

 = 0,0625 

 

O resultado encontrado é o valor da Centralidade de Proximidade para um 

grafo direcionado, de uma rede social composta por 5 indivíduos. Isso significa que 

em comparação à rede não-direcionada, composta igualmente por 5 pessoas, temos 

uma menor possibilidade de acessar e espalhar a informação (0,2 > 0,0625), já que 

as rotas têm um direcionamento definido. 

   

 

 

Fonte: do autor, 2025. 

𝑣5 
𝑣3 

𝑣1 

𝑣4 𝑣2 
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4.2.4 Centralidade de Autovetor ( 𝑪𝐞𝐢𝐠15) 

 

A Centralidade de Autovetor indica o quanto um nó está ligado aos nós mais 

importantes da rede. 

A Centralidade de Autovetor é uma medida utilizada na análise de redes sociais 

para avaliar a importância ou influência de um nó (ou ator) em uma rede. Ela considera 

tanto as conexões diretas como as indiretas de um nó.  

Assim, a Centralidade de Autovetor é baseada na ideia de que um nó é 

importante se estiver conectado a outros nós que também são importantes. Em outras 

palavras, a relevância de um nó é determinada pela relevância dos nós aos quais ele 

está ligado. 

A Centralidade de Autovetor é determinada por meio do autovetor 

correspondente ao maior autovalor da matriz de adjacência da rede. 

Matematicamente, podemos representá-la como: 

 

𝐶௩ =
1
𝜆

෍ 𝐴௜௝𝐶௝
௝

 

na qual: 

(𝐶௩) É 𝑎 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐴𝑢𝑡𝑜𝑣𝑒𝑡𝑜𝑟 𝑑𝑜 𝑛ó(𝑣). 

(𝜆) É 𝑜 𝑚𝑎𝑖𝑜𝑟 𝑎𝑢𝑡𝑜𝑣𝑒𝑡𝑜𝑟 𝑑𝑎 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝐴𝑑𝑗𝑎𝑐ê𝑛𝑐𝑖𝑎. 

൫𝐴௜௝൯ É 𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑜 𝑑𝑎 𝑀𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝐴𝑑𝑗𝑎𝑐ê𝑛𝑐𝑖𝑎 𝑞𝑢𝑒 𝑖𝑛𝑑𝑖𝑐𝑎 𝑠𝑒 𝑜𝑠 𝑛ó𝑠(𝑖) 𝑒 (𝑗)  

𝑒𝑠𝑡ã𝑜 𝑐𝑜𝑛𝑒𝑐𝑡𝑎𝑑𝑜𝑠 (1 𝑠𝑒 𝑠𝑖𝑚, 0 𝑠𝑒 𝑛ã𝑜). 

൫𝐶௝൯ É 𝑎 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑢𝑡𝑜𝑣𝑒𝑡𝑜𝑟 𝑑𝑜 𝑛ó(𝑗). 

 

Observamos que nesta métrica quanto maior o valor da Centralidade de 

Autovetor de um nó, mais importante ele é na rede. Essa medida leva em 

consideração a posição estratégica do nó na rede, considerando não apenas suas 

conexões diretas, mas também as conexões dos nós aos quais está ligado. No 

Apêndice A (pg. 65) discorremos com mais detalhes sobre a Centralidade de 

Autovetor, a sua importância para compreender os sistemas de interação humana 

onde há a presença de hierarquias e estratificação social. 

 
15 𝑪ୣ୧୥: Grau de Centralidade de Autovetor (Eigenvector - eig). 
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Nesta parte do texto não será executado o cálculo de Centralidade de Autovetor 

tendo em vista a extensão da matriz que é de ordem 5. No entanto, representamos a 

matriz de adjacência referente ao exemplo que exploramos durante este texto 

representada no grafo explicitado logo após a matriz16. 

 

⎣
⎢
⎢
⎢
⎡
0 1 1 0 0
1 0 1 0 0
1 1 0 0 1
0 0 0 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤
 

  

A matriz adjacência acima se refere ao grafo: 

 

Figura 6 - Rede social hipotética constituída por 5 indivíduos em grafo  

não direcionado 

 

                               

                                                                                             

                                                                  

                                                                            

 

 

 
 
 
 
 
 
 
 
 
 

 
16 Caso o leitor queira determinar os autovalores e os autovetores consulte a referência Eigenvalues 
and Eigenvectors Calculator - eMathHelp (2025) e coloque como entrada a matriz de adjacência 
referente ao exemplo que exploramos. 

 

Fonte: do autor, 2025. 

𝑣5 
𝑣3 

𝑣1 

𝑣4 𝑣2 

https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/
https://www.emathhelp.net/calculators/linear-algebra/eigenvalue-and-eigenvector-calculator/
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4.3 MÉTRICA GLOBAL (COEFICIENTE DE AGRUPAMENTO) 

 
 Uma métrica global é aquela que é utilizada para analisar uma rede social como 

um todo, diferente das métricas locais que são mais direcionadas aos indivíduos. 

 A métrica global abordada neste trabalho será o Coeficiente de Agrupamento 

(Cluster Coefficient, em inglês), que é uma medida indireta do quão próximos estão 

os indivíduos, o quanto as pessoas são “próximas” ou “desunidas” dentro de um grupo. 

Inspirados em Durkheim (2019)17, a ideia em utilizar o Coeficiente de Agrupamento 

bem como as métricas relacionadas às centralidades, decorre do “paradigma da 

integração social”.  

O sociólogo Émile Durkheim, buscou explicar o funcionamento da sociedade 

utilizando de analogia com os organismos vivos: a integração das partes (pessoas), 

tal como nos organismos biológicos, torna o ser (a sociedade, que emerge dessas 

interações) mais funcional e saudável. 

 

4.3.1 Coeficiente de Agrupamento (𝑪𝐜𝐥𝐮18)  
 

O Coeficiente de Agrupamento em análise de redes sociais mede o grau com 

que os nós de um grafo tendem a se agrupar. 

  Segundo Martins e Ferreira (2016), evidências sugerem que os nós da maioria 

das redes do mundo real, especialmente das redes sociais, tendem a criar grupos 

coesos caracterizados por uma alta densidade de laços. Isso significa que quanto 

maior a densidade de laços maior o Coeficiente de Agrupamento que pode ser 

determinado matematicamente pela relação: 

 

𝐶௜ =
2 ∗ 𝑇௜

𝑘௜ ∗ (𝑘௜ − 1) 

Na qual: 

 

(𝐶௜) É 𝑜 𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝐴𝑔𝑟𝑢𝑝𝑎𝑚𝑒𝑛𝑡𝑜 𝑑𝑜 𝑁ó (𝑖). 

(𝑇௜) É 𝑜 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑡𝑟𝑖â𝑛𝑔𝑢𝑙𝑜𝑠 𝑓𝑒𝑐ℎ𝑎𝑑𝑜𝑠(𝑡𝑟í𝑎𝑑𝑒𝑠) 𝑞𝑢𝑒 𝑖𝑛𝑐𝑙𝑢𝑒𝑚 𝑜 𝑛ó(𝑖). 

(𝑘௜) É 𝑜 𝑔𝑟𝑎𝑢 𝑑𝑜 𝑛ó(𝑖), 𝑜𝑢 𝑠𝑒𝑗𝑎, 𝑜 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑣𝑖𝑧𝑖𝑛ℎ𝑜𝑠 𝑑𝑖𝑟𝑒𝑡𝑜𝑠 𝑑𝑜 𝑛ó(𝑖). 

 
17 Durkheim foi trabalhado no texto de DIAS (2019), citado nas referências. 
18 𝑪ୡ୪୳: Coeficiente de Agrupamento (Cluster Coefficient – clu). 
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Esse coeficiente varia de 0 e 1, sendo que 0 indica que o nó não está conectado 

a nenhum outro nó vizinho, e 1 indica que todos os vizinhos do nó estão conectados 

entre si. Em redes sociais, um alto Coeficiente de Agrupamento indica que os amigos 

de um indivíduo também são amigos entre si, formando grupos coesos na rede. 

O Coeficiente de Agrupamento tem como objetivo quantificar o “poder” de 

determinado indivíduo ou de um grupo de indivíduos dentro de uma rede social. Esse 

“poder” pode ser verificado pela quantidade de citações que esse indivíduo possui 

dentro do conjunto dessa rede. As diferenças nas quantidades de citações podem 

representar as diferenças dos recursos que são postos a circular na rede, recursos 

que podem ser informações, indicações de emprego, recursos financeiros, 

conhecimentos científicos, dentre outros. 

Os influenciadores digitais são exemplos de “poder” dentro de uma rede social, 

eles possuem mais poder dentro desta rede por serem os mais citados. Uma medida 

do “poder” é dada pelo número de citações. 

Nesse sentido, no âmbito escolar, um alto Coeficiente de Agrupamento significa 

que a rede é mais coesa, pois se duas pessoas têm laços de amizade com uma 

terceira pessoa é alta a probabilidade de elas terem amizade entre si. 

O Coeficiente de Agrupamento também pode indicar o quão coeso ou estável 

é um grupo ao longo do tempo, ou seja, quanto maior o valor dessa métrica mais 

coeso é o grupo.  

Com essa métrica encerramos nossa abordagem sobre os fundamentos para 

nosso exemplo hipotético.  

  Assim, no que segue, apresentamos os procedimentos metodológicos que 

adotamos para a realização deste estudo, as técnicas de pesquisa empregadas, que 

permitiram uma visualização do mundo das matrizes mais próxima do mundo das 

relações humanas. 
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5 METODOLOGIA – O PERCURSO DO TRABALHO 
 

 
Antes de empreendermos na temática matrizes e suas aplicações no estudo 

das relações humanas, bem como abordarmos algumas métricas utilizadas no estudo 

de rede sociais e um exemplo hipotético dessas interações sociais obtido por meio de 

modelagem computacional, apresentamos os passos que empregamos para 

desenvolver este trabalho.  

Como relatado na introdução deste trabalho, tínhamos interesse em pesquisar 

como a matemática poderia ser utilizada nas ciências humanas visto que, em geral, o 

campo das ciências humanas e das ciências exatas são considerados como universos 

distintos. Neste sentido, iniciamos nossa pesquisa buscando autores que 

referenciassem a junção desses dois campos do conhecimento, o que descrevemos 

na Seção 2, p.18. 

Pelo fato de explorarmos as conexões entre a Matemática e o estudo do 

comportamento social humano, consideramos nosso trabalho como uma pesquisa 

exploratória que, de acordo com Cervo, Bervian e Silva (2007, p. 61): 

 
[...] a pesquisa exploratória é um tipo de pesquisa que busca familiarizar-se 
com um fenômeno ou problema pouco estudado. Ela é útil para definir 
objetivos, formular hipóteses e selecionar técnicas apropriadas para 
pesquisas futuras. Este tipo de pesquisa é flexível e pode envolver 
levantamentos bibliográficos, entrevistas e estudos de caso [...]. 

 
ou seja, buscamos investigar conexões entre a Matemática e as Ciências Sociais, 

explorando e descrevendo ao longo do texto como a compreensão do comportamento 

social pode ser beneficiada pelo ponto de vista matemático.  

Após termos realizado uma revisão de literatura em sites (Google Scholar, 

Science Direct, dentre outros) e em autores relacionados ao ponto de vista quantitativo 

nas Ciências Sociais, construímos o arcabouço que permitiu construirmos a nossa 

pesquisa. 

Devido à complexidade de realização de uma pesquisa empírica, de campo, 

com sujeitos reais, seguindo protocolos metodológicos que garantissem a sua 

validação científica, optamos por criar uma rede social artificial, em que foram 

utilizadas de matrizes quadradas binárias, como descrevem Hanneman e Riddle 

(2005). Segundo esses autores, em uma matriz utilizada para estudo de interações 

entre indivíduos em uma rede social, o valor 0 (zero) representa a ausência de relação 



46 
 

entre duas pessoas e o valor 1 (um) significa a presença de afinidade e interação entre 

dois indivíduos. A utilização desse formato de matriz, representadas por 0 e 1, e as 

métricas relacionadas à análise de redes sociais, que foram explorados na seção 3 p. 

21, permitiu que pudéssemos ter uma visão mais compreensível do tipo de rede social 

ora analisada bem como o comportamento que emerge de um conjunto de pessoas 

ou mesmo de uma comunidade.  

Nossa intenção era a de que a quantidade de indivíduos na rede social artificial 

que exploramos obedecesse ao Número de Dunbar (conceito que foi discutido na 

seção 4, p. 32), de 150 indivíduos, mas reduzimos para 50 indivíduos, para que os 

atores pudessem ser visualizados individualmente. Essa redução, feita a partir da 

subtração de valores inteiros, de 10 em 10 (de 150 para 140, de 140 par 130...), teve 

a intenção de transformar um gráfico de nuvem de pontos em um gráfico de pontos, 

na qual fosse possível observar os atores e as suas interações com mais clareza. 

Assim, a rede social analisada e discutida neste trabalho, foi criada a partir de 

linhas de código denominadas scripts no software de análise estatística RStudio, 

dentro da biblioteca igraph. O desenho da rede social artificial e as quantidades de 

vínculos entre os indivíduos e as probabilidades desses vínculos ocorrerem teve por 

base uma rede do tipo Erdős-Rényi (no Apêndice B, p. 67 detalhamos esse tipo de 

rede). No espaço do RStudio, foram obtidas as estatísticas descritivas dos nossos 

dados e os gráficos que ilustram o formato da nossa rede artificial; dessa maneira, é 

mostrada e discutida a aplicação das matrizes para uma descrição mais precisa das 

interações entre os indivíduos nesta rede.  

Por meio deste software obtivemos métricas e gráficos de formatos variados e 

que puderam trazer à luz diferentes formatos de interação entre indivíduos, grupos 

sociais diferentes e fenômenos comportamentais agregados também diferentes, o que 

será discutido posteriormente. 

As métricas discutidas neste trabalho (Centralidade, Intermediação, 

Proximidade, dentre outras), apresentadas na Seção 4 e calculadas na Seção 6, 

contaram com o uso de ferramentas computacionais.  

Por meio desses procedimentos adotados descritos, delineamos nosso 

trabalho. Seguindo o raciocínio delineado nas seções anteriores (autores, 

fundamentos matemáticos e métricas de análise de redes sociais), faremos na 

próxima seção uma análise de redes sociais a partir de uma rede social artificial, criada 

no software RStudio. 
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6 EXEMPLIFICANDO UMA ANÁLISE DE REDES SOCIAIS 
 

 

Nesta seção, apresentamos a análise de uma rede social artificial constituída 

de 50 pessoas e mostramos e analisamos os gráficos das métricas discutidas na 

seção anterior. No Apêndice C (p. 69) disponibilizamos as linhas de código, 

formuladas no software de análise estatística RStudio, para que os leitores possam 

ter uma noção sobre como os gráficos que ilustram as nossas métricas foram 

produzidos.  

Todos os gráficos empregaram o pacote igraph do RStudio e foram criadas 

com base nesta rede artificial de 50 pessoas a partir de uma simulação baseada em 

"redes do tipo Erdős-Rényi"19 no qual os indivíduos (vértices, nós) têm a mesma 

probabilidade de formar uma aresta (ligação). O algoritmo de simulação tem por 

parâmetros iniciais uma probabilidade de formação de arestas (ligações) entre os 

vértices (nós, indivíduos) de 0,1 (10%) sendo os grafos do tipo não-direcionado (só 

existe aresta entre A e B se A seguir B e B seguir A). 

Cada um dos 50 pontos20 destes gráficos têm os seus valores particulares em 

cada uma das métricas. É apresentado um gráfico para cada uma das 5 das métricas 

e cada gráfico relaciona 50 indivíduos entre si, o que nos daria um total de 250 

indicadores numéricos e, devido à extensão de dados, optamos pelo formato gráfico 

ao invés de apresentarmos tabelas para cada um desses conceitos.  

Para cada métrica representada graficamente, apontamos um indicador médio 

que corresponde a um número que representa o valor global daquela métrica. Com 

exceção do Grau de Centralidade21, todas as métricas estão escalonadas entre 0 e 1 

e este intervalo foi dividido em 5 partes, tal como nos quintis de uma análise 

estatística. Para cada quintil indicamos na legenda a quantidade de pessoas que se 

encontram dentro de cada faixa.  

Cada um desses quintis no gráfico está associado a uma cor. As pessoas do 

primeiro quintil, de 0,00 a 0,20, aparecem como pontos azuis; as pessoas do quinto 

quintil, de 0,80 a 1,00, aparecem como pontos vermelhos. O restante das pessoas 

 
19 Para mais informações consulte o que é descrito no Apêndice C. 
20 A Matriz de Adjacência e os valores das métricas produzidas para criar os gráficos estão nos 
Apêndices D e E, p. 79.  
21 Isso se deve ao fato dela não ser produzida por meio de uma fórmula e sim da contagem simples do 
número de indivíduos que têm ligações com outros indivíduos. 
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está alocado em quintis e cores intermediárias. Quanto maior é a relação de um 

indivíduo dentro da rede, mais elevado é o quintil em que ele se encontra e, dessa 

maneira, temos uma representação numérica dos níveis de poder e de estratificação 

dentro da rede que estamos analisando. 

 

6.1 GRAU DE CENTRALIDADE 

 

Na Figura 7 apresentamos o gráfico que mostra o Grau de Centralidade da rede 

artificial. Como relatado anteriormente, é a única métrica que não foi normalizada com 

intervalos entre 0,00 e 1,00. Os seus valores costumam ser expressos com números 

inteiros por ser uma variável discreta. No entanto, neste gráfico, observa-se valores 

com casas decimais após a vírgula por não se tratar de indivíduos e sim de quantidade 

de conexões que realmente aconteceram. Neste caso, as conexões entre os 

indivíduos estão sujeitas a valores de probabilidade que não assumem somente 

números inteiros para expressar resultados; dessa maneira, ao somarmos todos os 

nós para obtermos uma média das conexões, temos indicadores que apresentam 

casas decimais.  

 
Figura 7 - Grau de Centralidade 

 
Como pode ser observado na legenda do gráfico, não foi realizado a subdivisão 

do intervalo de 0,00 a 1,00; entretanto, o software RStudio separou a distribuição das 
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quantidades de conexões em 5 partes iguais (quintis). 

De acordo com o gráfico e a legenda concluímos que: 

Há 19 pessoas com 1 a 3 conexões; 7 pessoas com 3 a 4 conexões; 6 pessoas 

com 4 a 5 conexões; 10 pessoas com 5 a 6 conexões e 8 pessoas com 6 a 9 conexões. 

A média22 (aritmética) de conexões dentro da métrica do Grau de Centralidade 

é de 4,52 conexões.   

Assim, percebemos que em nossa rede artificial existem mais indivíduos com 

poucas conexões (baixo Grau de Centralidade) e uma minoria com maior número de 

conexões (alto Grau de Centralidade).  

No link a seguir podemos observar o Grau de Centralidade de cada indivíduo 

da nossa rede social artificial, sob o formato de gráfico dinâmico: 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_D

ados_TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt.Dinâmico/Grafic

o_Interativo_Grau.html 

 

6.2 GRAU DE CENTRALIDADE DE INTERMEDIAÇÃO 

 

O Grau de Centralidade de Intermediação dessa mesma rede artificial é 

apresentado na Figura 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
22 Todas as médias aritméticas desta seção foram obtidas por meio da execução do comando mean 
(deg) no RStudio.  

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Grau.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Grau.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Grau.html


50 
 

Figura 8 - Grau de Centralidade de Intermediação

 
O Grau de Centralidade de Intermediação é a medida do quanto um indivíduo 

é capaz de ser um elemento de conexão entre outros dois indivíduos de uma rede. 

Como esta rede é do tipo aleatório, é baixa a probabilidade de termos muitas pessoas 

no papel de pontes entre duas outras. O que existe aqui são muitos indivíduos em 

posições periféricas, gerando métricas individuais baixas, deslocando a média da rede 

para um valor baixo também. Para fins de padronização, aqui temos a escala de 0,00 

a 1,00 dividida em 5 partes (chamadas aqui de quintis). Nenhum indivíduo pontuou 

acima de 0,20, portanto todos eles estão localizados no primeiro quintil. 

A presença da cor vermelha não significa que temos alguma pessoa pontuando 

perto de 1,00, significa que para a pessoa de maior pontuação foi alocada vermelho 

(ainda que a sua pontuação estivesse abaixo de 0,20) e para a pessoa de menor 

pontuação, a cor azul. O restante das pessoas em cores intermediárias. A escala de 

cores não é absoluta (de 0,00 a 1,00), ela obedece aos valores encontrados no 

conjunto particular de dados. 

A pontuação média23 de um nó no Grau de Centralidade de Intermediação é 

cerca de 0,03, indicado que a maioria dos indivíduos não têm o papel de intermediários 

para com os outro. 

No link a seguir podemos observar o Grau de Centralidade de Intermediação 

para cada indivíduo da nossa rede social artificial, sob o formato de gráfico dinâmico: 

 
23 Média aritmética obtida utilizando o comando mean (bet) no RStudio. 



51 
 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_D

ados_TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt.Dinâmico/Grafic

o_Interativo_Intermediacao.html 

 

6.3 GRAU DE CENTRALIDADE DE PROXIMIDADE 

 

O Grau de Centralidade de Proximidade dessa mesma rede artificial é 

apresentado na Figura 9. 

 
Figura 9 - Grau de Centralidade de Proximidade 

 
 

A Centralidade de Proximidade é uma medida do quanto um indivíduo é capaz 

de acessar todos os pontos de uma rede, desde os mais centrais aos mais periféricos. 

É uma medida de mobilidade. Quanto maior a pontuação de uma pessoa nesta 

métrica, maior é a sua capacidade de conhecer os principais fluxos de informação, 

pelo fato de poder acessar uma maior quantidade de pessoas em quaisquer pontos 

da rede. Abaixo, temos as quantidades de pessoas alocadas em quintis de acordo 

com as suas pontuações: 

 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Intermediacao.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Intermediacao.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Intermediacao.html
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Primeiro quintil da distribuição dos dados (0,00 a 0,20): 0 pessoas; 

Segundo quintil da distribuição dos dados (0,20 a 0,40): 33 pessoas; 

Terceiro quintil da distribuição dos dados (0,40 a 0,60): 11 pessoas; 

Quarto quintil da distribuição dos dados (0,60 a 0,80): 0 pessoas; 

Quinto quintil da distribuição de dados: (0,80 a 1,00): 0 pessoas. 

A pontuação média24 no Grau de Centralidade de Proximidade é de 0,37, 

significando que é uma rede no qual os indivíduos têm uma capacidade de baixa a 

moderada de monitorar as informações. 

No link a seguir podemos observar o Grau de Centralidade de Proximidade 

para cada indivíduo da nossa rede social artificial, sob o formato de gráfico dinâmico: 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_D

ados_TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt.Dinâmico/Grafic

o_Interativo_Proximidade.html 

 

6.4 GRAU DE CENTRALIDADE DE AUTOVETOR 

 

O Grau de Centralidade de Autovetor dessa mesma rede artificial é 

apresentado na figura 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
24 Média aritmética obtida através da execução deste comando no RStudio: mean(clo).  
 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Proximidade.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Proximidade.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Proximidade.html
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Figura 10 - Grau de Centralidade de Autovetor 

 
 

O Grau de Centralidade de Autovetor é uma avaliação do grau de importância 

de um nó mediada pela importância dos nós aos quais ele está vinculado. É uma 

medida que busca encontrar as lideranças, os principais pontos de poder dentro de 

uma rede; o potencial de influência de um nó, considerando a sua posição matemática 

em relação aos pontos de maior prestígio, ou seja, os pontos que têm mais arestas 

com outros pontos. Quanto maior o seu valor, mais influente esse indivíduo é, porque 

também é citado pelos outros pontos mais influentes. A seguir temos o número de 

pessoas alocadas em quintis de acordo com as suas pontuações: 

 

Primeiro quintil da distribuição dos dados (0,00 a 0,20): 12 pessoas; 

Segundo quintil da distribuição dos dados (0,20 a 0,40): 17 pessoas; 

Terceiro quintil da distribuição dos dados (0,40 a 0,60): 12 pessoas; 

Quarto quintil da distribuição dos dados (0,60 a 0,80): 4 pessoas; 

Quinto quintil da distribuição de dados: (0,80 a 1,00): 5 pessoas. 
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A pontuação média25 no Grau de Centralidade de Autovetor é de 0.39, o que é 

um valor moderado, a maior parte das pessoas está distribuída nos três primeiros 

quintis, totalizando 41 pessoas do nosso conjunto de 50 indivíduos. Apenas 5 pessoas 

têm uma pontuação acima de 0,80, o que é uma evidência para a ideia de que 

estamos lidando com uma estrutura de relações estratificada, semelhante ao formato 

de uma pirâmide social de base larga e topo estreito. 

No link a seguir podemos observar o Grau de Centralidade de Autovetor para 

cada indivíduo da nossa rede social artificial, sob o formato de gráfico dinâmico: 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_D

ados_TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt.Dinâmico/Grafic

o_Interativo_Autovetor.html 

 

6.5 COEFICIENTE DE AGRUPAMENTO  

 

Por último, temos o Coeficiente de Agrupamento dessa mesma rede artificial, 

o que é apresentado na Figura 11. 

 

Figura 11 - Coeficiente de Agrupamento. 

 

 
25 Média aritmética obtida através da execução deste comando no RStudio: mean(eig). 
 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Autovetor.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Autovetor.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Autovetor.html
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O Coeficiente de Agrupamento é uma medida do quanto um determinado nó é 

capaz de formar um grupo com outros nós. Na fórmula para o seu cálculo são levadas 

em consideração as tríades, grupos de três indivíduos em que o nó está incluído, mais 

os vizinhos diretos daquele nó. Ou seja, ele mede o quão amigos são os seus amigos. 

Se a pessoa tem muitos amigos e nenhum deles é amigo entre si, significa que não 

há muitos grupos fechados nessa rede, portanto há poucos cliques (nome em análise 

de redes sociais para grupos fechados de três pessoas, as “panelinhas”). Quanto 

maior é o Coeficiente de Agrupamento, maior é a tendência de uma rede social em 

permanecer estável quanto às características internas de distribuição de citações, 

influências e recursos ofertados pelos grupos presentes.  

A seguir mostramos, a quantidade de pessoas presentes nos quintis de acordo 

com as suas pontuações no Coeficiente de Agrupamento.  

Primeiro quintil da distribuição dos dados (0,00 a 0,20): 50 pessoas; 

Segundo quintil da distribuição dos dados (0,20 a 0,40): 0 pessoas; 

Terceiro quintil da distribuição dos dados (0,40 a 0,60): 0 pessoas; 

Quarto quintil da distribuição dos dados (0,60 a 0,80): 0 pessoas; 

Quinto quintil da distribuição de dados: (0,80 a 1,00): 0 pessoas. 

A pontuação média26 no Coeficiente de Agrupamento é de 0,03 considerada 

fraca, indicando que um indivíduo pode ter vários amigos, mas poucos desses amigos 

têm relações de amizade entre si. 

Sendo uma rede aleatória, com baixas possibilidades de duas pessoas 

formarem uma conexão e uma probabilidade menor ainda de que as conexões 

aconteçam em formato de tríade (um amigo seu ser amigo de um outro amigo seu), 

gerando valores de Coeficiente de Agrupamento perto de zero. 

No link a seguir podemos observar o Coeficiente de Agrupamento para cada 

indivíduo da nossa rede social artificial, sob o formato de gráfico dinâmico: 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_D

ados_TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt.Dinâmico/Grafic

o_Interativo_Agrupamento.html 

Assim, concluímos que essa rede artificial de 50 indivíduos guarda 

semelhanças com as sociedades reais que observamos e experienciamos no dia a 

dia: possui estratificação, uma distribuição desigual de recursos; Tal estratificação, 

 
26 Média aritmética obtida através da execução deste comando no RStudio: mean(clu).  

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Agrupamento.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Agrupamento.html
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt.Din%C3%83%C2%A2mico/Grafico_Interativo_Agrupamento.html
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com faixas diferenciadas de citações, tem o formato de uma pirâmide (como uma 

“pirâmide social”, no gráfico de Centralidade de Autovetor); Como na vida cotidiana, 

essa rede tem os pontos(pessoas) que fazem o papel de intermediários entre os 

diferentes grupos e “classes sociais” e tem os indivíduos que por estarem próximos 

daqueles com mais recursos, têm mais recursos.  
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7 CONSIDERAÇÕES FINAIS 
 

 

Como delineado no texto, a análise de redes sociais alicerçada na Matemática 

permite termos uma noção sobre a natureza das interações entre os indivíduos e de 

que modo os grupos estão conectados e, como, apesar de imersos dentro do mundo 

social, percebermos como a matemática pode ser utilizada para tentarmos 

compreender as relações humanas. 

Com este trabalho, pudemos compreender e apontar a potencialidade de 

instrumentos matemáticos para o estudo de relações sociais residindo na capacidade 

de proporcionar o encontro de diferentes pontos de vista às vezes tomados até como 

antagônicos: a Matemática e as Ciências Sociais. Assim, concluímos que problemas 

do cotidiano social podem ser abarcados e estudados, pelo menos em parte, por 

ferramentas matemáticas.  

Ao término deste trabalho, concluímos que: 

 a ampliação das fronteiras da Matemática para possibilitar a investigação de 

relações entre elementos (pessoas) cujo comportamento reside na 

característica de possuir uma elevada variabilidade. Nesse sentido, a 

Matemática pode ser uma ferramenta importante ao ser aplicada nas Ciências 

Sociais como, por exemplo, para aumentarmos a nossa percepção sobre a 

realidade que nos cerca e que comumente nos parece aleatória. Assim, ao 

analisarmos uma rede social observando simplesmente as relações individuais 

e globais, isso não nos traz elementos suficientes para concluirmos algo sobre 

essas interações; no entanto, por meio das métricas, podemos, por exemplo, 

verificar indivíduos centrais ou periféricos, formação de grupos de poder, 

grupos de elite, a forma como as informações circulam, dentre outros;  

 outro elemento a destacar é a junção da Matemática com os conhecimentos da 

Ciência da Computação, permitindo que sejam realizados experimentos nas 

Ciências Sociais, neste caso, experimentos in sílico (em silício, elemento 

químico presente nos chips de computadores), orientados pela teoria 

sociológica, criando sociedades artificiais para testar hipóteses sobre o 

comportamento humano; nesse sentido, a confluência da Matemática com a 

Ciência da Computação. Isso permitiu que utilizássemos dessas ferramentas 

para explicar fenômenos que talvez fossem impossíveis de serem estudados, 
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dadas as questões éticas das pesquisas com seres humanos e a logística 

necessária para operar e validar uma pesquisa em larga escala - com grandes 

amostras (para permitir inferências estatísticas confiáveis). A rede social 

artificial que construímos e analisamos neste trabalho (Seção 6) contribuiu para 

fazermos inferências sobre relações humanas que seriam dispendiosas de 

serem obtidas em relações reais como, por exemplo, envolvimento com 

questões éticas e de infraestrutura que em geral fazem parte de todas as 

pesquisas que lidam com seres humanos; 

 por fim, podemos ter uma perspectiva de inovação didática, visto que a 

Matemática empregada na análise de redes sociais poderá ser utilizada como 

fio condutor no ensino de matrizes ao apontar exemplos sobre as relações 

estabelecidas entre as pessoas, sejam relações presenciais (off-line) ou de 

mídias sociais (on-line). Entendemos que isso possa ter potencial em despertar 

interesse do aluno para a aprendizagem de conceitos concernentes a matrizes, 

uma vez que, em tese, utiliza elementos de sua vivência cotidiana (utilização 

de mídias sociais); apontamos isso porque imaginamos que muitos estudantes 

estejam rotineiramente em relações sociais mediadas pelo uso das mídias 

sociais. 

O próximo passo, visando ampliar este trabalho, seria a execução de uma 

pesquisa de campo, empírica, para termos os valores dessas métricas em grupos de 

pessoas reais e comparar esses dados com aqueles das nossas sociedades artificiais. 

  Sob nosso olhar vemos a importância deste trabalho como uma forma de 

relacionar a matemática com a vivência cotidiana, pois as pessoas, repetidamente, 

utilizam das mídias sociais para fins de comunicação, comércio e entretenimento; 

pensam, talvez imaginem, que a teia das relações humanas é permeada pela 

aleatoriedade, mas, na realidade, existem tendências e padrões que podem ser 

apreendidos por ferramentas fornecidas pela Matemática. 

Sob nossa percepção, inferimos que a temática deste trabalho também poderá 

ser utilizada em outros domínios como, por exemplo, para conduzir execuções mais 

eficientes de políticas públicas em setores como o de Saúde, Educação, Segurança 

Pública e Justiça, ou no Setor Privado, na área de Marketing, lançamento de 

campanhas, vendas etc. Entendemos que estudos nessas áreas poderiam ser 

beneficiados por insights como os neste trabalho fornecidos ao fazermos análise de 

uma rede social artificial, no qual é tomada como unidade de análise não apenas os 
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atributos dos indivíduos, mas a relação que estes estabelecem na sua comunidade, o 

que deixamos como sugestões de pesquisa.   
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APÊNDICE A - CENTRALIDADE DE AUTOVETOR 
 
Para reforçar as ideias expostas na seção 4 sobre a métrica Centralidade de 

Autovetor, buscamos nos apoiar na Inteligência Artificial da Microsoft embutida no 

buscador Bing27, com o objetivo de buscar mais referências relacionadas às definições 

sobre os autovalores e autovetores. Este buscador faz uma ampla busca ao se 

pesquisar sobre determinado tema. Assim, para nossa busca fizemos a seguinte 

pergunta: Qual é a Importância do cálculo de Autovalores e Autovetores na Análise 

de Redes Sociais? Os resultados obtidos estão seguem adiante, bem como é 

fornecido o link para que o leitor possa verificar os resultados de autovetor e autovalor 

para uma rede social de 5 indivíduos. Em geral a principal resposta destaca que os 

autovalores e autovetores são fundamentais na análise de redes sociais, 

especialmente para calcular a Centralidade de autovetor, necessária para a detecção 

de lideranças, locais geradores de influência dentro da rede.   

 A Centralidade de Autovetor é uma medida que indica a influência de um nó na rede, 

considerando não apenas o número de conexões diretas (grau), mas também a 

importância dos nós aos quais está conectado1. 

Significado e Importância: 

1. Identificação de Nós Influentes: A Centralidade de Autovetor ajuda a identificar 

nós que são influentes não apenas por suas conexões diretas, mas também 

por estarem conectados a outros nós influentes1.(VALANGO, B et al, 2017) 

2. Análise de Estruturas Complexas: Em redes sociais complexas, onde a simples 

contagem de conexões não é suficiente, os autovalores e Autovetores 

fornecem uma visão mais profunda da estrutura da rede2. 

 

3. Aplicações em Ciências Sociais: Em ciências sociais, essa análise pode ser 

usada para entender a dinâmica de grupos, identificar líderes de opinião, e 

estudar a disseminação de informações e comportamentos3. 

 
27 Pergunta utilizada: Calcule o autovetor e autovalor da seguinte matriz: 
{{0,1,1,0,0},{1,0,1,0,0},{1,1,0,0,1},{0,0,0,0,1},{0,0,1,1,0}} E depois me fale sobre o significado e a 
importância de se calcular o autovetor e autovalor para a análise de redes sociais em ciências sociais, 
principalmente para o cálculo da Centralidade de autovetor. A partir da matriz fornecida, faça o cálculo 
da Centralidade de autovetor para a linha (vértice) 3. Disponível em: Microsoft Copilot no Bing Acesso 
em: 20 de setembro de 2024. 

https://dspace.uevora.pt/rdpc/bitstream/10174/12831/1/20881-41419-1-PB_FINAL.pdf
https://dspace.uevora.pt/rdpc/bitstream/10174/12831/1/20881-41419-1-PB_FINAL.pdf
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https://dspace.uevora.pt/rdpc/bitstream/10174/12831/1/20881-41419-1-PB_FINAL.pdf
https://dspace.uevora.pt/rdpc/bitstream/10174/12831/1/20881-41419-1-PB_FINAL.pdf
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64 
 

4. Estabilidade e Dinâmica de Redes: Em sistemas dinâmicos, os autovalores 

podem indicar a estabilidade da rede e prever como ela pode evoluir ao longo 

do tempo4.” 

 
Referências fornecidas pela Inteligência Artificial sobre a Centralidade de Autovetor: 

1. Valongo, B., Serra, F., Laporta, L., Afonso, J., & Mesquita, I. (2017). Análise de 

Redes Sociais no alto nível desportivo: Centralidade de Grau versus Autovetor. 

Revista Portuguesa de Ciências do Desporto, 17(S1A), 156-1571 

2. Tese de Doutorado: “SentiElection: análise de sentimento no Twitter baseada 

em centralidade de autovetor, Katz e PageRank.” 2 

3. Aula sobre análise de centralidade e componentes em redes sociais3 
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https://rpcd.fade.up.pt/_arquivo/artigos_soltos/2017-S1A/2-05.pdf
https://rpcd.fade.up.pt/_arquivo/artigos_soltos/2017-S1A/2-05.pdf
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-16082019-215233/
https://rpcd.fade.up.pt/_arquivo/artigos_soltos/2017-S1A/2-05.pdf
https://files.cercomp.ufg.br/weby/up/771/o/Aula_07_-_Centralidade.pdf?1493561136
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APÊNDICE B - SOBRE REDES DE ERDŐS-RÉNYI 
 

O modelo Erdős-Rényi é frequentemente utilizado como padrão em simulações 

de redes sociais aleatórias no RStudio devido a várias propriedades que o tornam 

adequado para esse tipo de análise: 

1. Simplicidade e Facilidade de Implementação: O modelo Erdős-Rényi é 

relativamente simples de implementar. Ele cria redes onde cada par de nós tem 

uma probabilidade fixa de estarem conectados, o que facilita a geração de 

redes aleatórias. 

2. Propriedades Estatísticas Bem-Definidas: As redes Erdős-Rényi possuem 

propriedades estatísticas bem-definidas, como a distribuição de grau que 

segue uma distribuição de Poisson. Isso permite que os pesquisadores façam 

previsões e análises estatísticas com base em propriedades conhecidas. 

3. Modelo de Referência: O modelo Erdős-Rényi serve como um modelo de 

referência ou ponto de partida para a análise de redes. Ele é frequentemente 

usado para comparar com outros modelos mais complexos, como redes de 

mundo pequeno (small-world) ou redes livres de escala (scale-free), para 

entender melhor as características específicas de diferentes tipos de redes. 

4. Flexibilidade: O modelo pode ser ajustado facilmente alterando a probabilidade 

de conexão entre os nós, permitindo a criação de redes com diferentes 

densidades e características. 

Essas propriedades tornam o modelo Erdős-Rényi uma escolha popular e 

eficaz para simulações iniciais e análises comparativas em estudos de redes sociais. 

O que é uma rede Erdõs-Rényi? 

Uma rede de Erdős-Rényi é um tipo de rede aleatória onde cada par de nós 

(ou vértices) tem uma probabilidade fixa de estarem conectados por uma aresta (ou 

ligação). Esse modelo foi introduzido pelos matemáticos Paul Erdős e Alfréd Rényi na 

década de 1950 e é um dos modelos mais simples e fundamentais para a geração de 

redes aleatórias. 
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Características Principais: 

1. Probabilidade de Conexão: Cada par de nós é conectado com uma 

probabilidade pp independente das outras conexões. 

2. Distribuição de Grau: A distribuição de grau dos nós segue uma distribuição de 

Poisson, o que significa que a maioria dos nós terá um grau próximo ao valor 

médio, com poucos nós tendo graus muito altos ou muito baixos. 

3. Simetria: A rede é simétrica, ou seja, não há distinção entre os nós; todos têm 

a mesma probabilidade de se conectar a qualquer outro nó. 

4. Conectividade: Dependendo do valor de pp, a rede pode ser desconectada 

(com muitos componentes isolados) ou conectada (com um grande 

componente conectado). 

Aplicações: 

 Modelagem de Redes Sociais: Serve como um modelo de referência para 

comparar com redes sociais reais e entender suas propriedades. 

 Estudos de Robustez e Vulnerabilidade: Utilizado para estudar como a rede se 

comporta sob falhas aleatórias ou ataques direcionados. 

 Teoria dos Grafos: Fundamental para o desenvolvimento de teorias e 

algoritmos em grafos. 

Fonte consultada: BARABÁSI, Albert-László. Linked: a nova ciência das networks. 1. 

ed. São Paulo: Hemus Editora, 2009. 250 p. ISBN 978-8528906127.  

Também trabalhado pela Inteligência Artificial Generativa (Copilot-Microsoft). 

Pergunta geradora: O que é uma rede Erdõs-Rényi? 

Acesso em 6 de janeiro de 2025. 
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APÊNDICE C - COMO FORAM GERADAS AS LINHAS DE CÓDIGO DESTE 
TRABALHO 

 
PROMPTS (PERGUNTAS DIRECIONADORAS) criados gerar os gráficos das 
métricas de centralidade e as linhas de código dos gráficos (Gemini). 

1-Pergunta para gerar (e corrigir) os gráficos das métricas de centralidade. 
Prompt consolidado, somando as sugestões do autor e da inteligência artificial 
generativa (Gemini). 

"Construa um script de RStudio a partir do pacote igraph, para criar um gráfico de rede 

(50 indivíduos, garantindo a reprodutibilidade com set.seed(42), e uma probabilidade 

de 0,10) mostrando as métricas de grau de centralidade, centralidade de 

intermediação, centralidade de proximidade, centralidade de autovetor e coeficiente 

de agrupamento. 

Com exceção do grau de centralidade, que deve ter seus valores brutos expostos, 

normalize todas as outras métricas para uma escala de 0 a 1. 

Faça cinco gráficos separados, um para cada métrica, e salve-os como arquivos PNG 

de alta definição para que não percam a nitidez ao serem ampliados. Não coloque um 

título principal nos gráficos. A gradação de cores dos nós em todos os gráficos deve 

ser do menor valor (azul) para o maior (vermelho). 

A legenda de cada gráfico deve ser customizada da seguinte forma: 

Coloque o nome da métrica como título da legenda. 

Para as métricas normalizadas, a legenda deve mostrar as faixas de valores fixas (0-

0.20, 0.20-0.40, 0.40-0.60, 0.60-0.80, 0.80-1.00). 

Para a métrica de Grau de Centralidade, crie 5 faixas de valores baseadas na 

distribuição dos próprios dados. 

Ao lado de cada faixa na legenda, indique entre parênteses a quantidade exata de 

indivíduos que pertencem àquela faixa. 

Ajuste a posição da legenda para que não sobreponha os elementos do gráfico. 

Adicione o texto "Fonte: Dados simulados pelo autor, 2025." na parte inferior e 

centralizada de cada gráfico. 

Exporte também os dados gerados para arquivos Excel: 

Uma matriz de adjacência quadrada e binária (0s e 1s), com os indivíduos 

identificados tanto nas linhas quanto nas colunas. 
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Cinco arquivos separados, um para cada métrica, contendo os IDs dos indivíduos e 

seus respectivos scores. Faça também um único arquivo em Excel, contendo os 50 

indivíduos nas linhas e as 5 métricas nas colunas.  

Por fim, o script deve ser robusto, incluindo correções para evitar erros com valores 

ausentes (NA) que possam surgir nos cálculos. Comente o código extensivamente, 

explicando o propósito de cada função e de cada comando para garantir a clareza.”. 

 

2- Pergunta para gerar (e corrigir) os gráficos das métricas de centralidade, 
formato de gráfico dinâmico.  
Tornando possível a visualização das pontuações de cada indivíduo da nossa rede 

artificial. Prompt consolidado, somando as sugestões do autor e da inteligência 

artificial generativa (Gemini). 

 

“Construa um script de RStudio que utilize os pacotes igraph e visNetwork para criar 

um gráfico de rede (50 indivíduos, garantindo a reprodutibilidade com set.seed(42) e 

uma probabilidade de conexão de 0.10) mostrando as métricas de grau de 

centralidade, centralidade de intermediação, centralidade de proximidade, 

centralidade de autovetor e coeficiente de agrupamento. 

Com exceção do grau de centralidade, que deve ter seus valores brutos expostos, 

normalize todas as outras métricas para uma escala de 0 a 1. 

Faça cinco gráficos interativos separados, um para cada métrica, e salve-os como 

arquivos HTML autônomos. A principal funcionalidade interativa deve ser: ao passar 

o mouse sobre um nó (indivíduo), uma caixa de informações (tooltip) deve aparecer 

instantaneamente, mostrando de forma clara o nome do indivíduo e sua pontuação 

naquela métrica específica. 

Defina a estética dos gráficos da seguinte forma: 

A gradação de cores dos nós em todos os gráficos deve ser do menor valor (azul) 

para o maior (vermelho). 

Os links (arestas) entre os nós devem ter uma cor cinza escura para garantir bom 

destaque visual. 

A legenda de cada gráfico deve ser clara e bem espaçada, mostrando o nome da 

métrica como título e uma escala de valores de amostra com suas cores 

correspondentes. 
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Adicione o texto "Fonte: Dados simulados pelo autor, 2025." como um rodapé fixo em 

cada gráfico interativo. 

Exporte também os dados gerados para arquivos Excel: 

Uma matriz de adjacência quadrada e binária (0s e 1s), com os indivíduos 

identificados tanto nas linhas quanto nas colunas. 

Cinco arquivos separados, um para cada métrica, contendo os IDs dos indivíduos e 

seus respectivos scores. 

Um único arquivo Excel consolidado, contendo os 50 indivíduos nas linhas e as 5 

métricas nas colunas. 

Por fim, o script deve ser robusto, incluindo correções para evitar erros de valores 

ausentes (NA) ou de indexação. Comente o código extensivamente, explicando o 

propósito de cada função e de cada comando para garantir a clareza.”. 

 

LINHAS DE CÓDIGO GERADAS 

 

Linhas de código 1: 
 #------------------------------------------------------------------------------- 

# PASSO 1: CONFIGURAÇÃO DO AMBIENTE 

# Garante que os pacotes necessários estão instalados e carregados. 

#------------------------------------------------------------------------------- 

  

# Verifica se o pacote 'igraph' está instalado; se não, instala. 

if (!require("igraph")) { 

  install.packages("igraph") 

} 

# Carrega o pacote 'igraph' para análise e visualização de redes. 

library(igraph) 

  

# Verifica se o pacote 'writexl' está instalado; se não, instala. 

if (!require("writexl")) { 

  install.packages("writexl") 

} 

# Carrega o pacote 'writexl' para exportar dados para o formato Excel. 

library(writexl)  

  

#------------------------------------------------------------------------------- 

# PASSO 2: CRIAÇÃO DA REDE SOCIAL 

# set.seed(42) garante a reprodutibilidade dos resultados. 

#------------------------------------------------------------------------------- 

  

# Define a semente de reprodutibilidade para 42. 

set.seed(42) 

  

# Cria um gráfico de rede com 50 nós (indivíduos). 

# 'sample_gnp' cria um gráfico aleatório do modelo Erdos-Renyi. 

# n = 50 é o número de nós. 
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# p = 0.10 é a probabilidade de uma conexão existir entre quaisquer dois nós (conforme 

solicitado). 

g <- sample_gnp(n = 50, p = 0.10) 

  

# Define os nomes dos vértices (nós) como "Ind_1", "Ind_2", ..., "Ind_50". 

V(g)$name <- paste0("Ind_", 1:vcount(g)) 

  

#------------------------------------------------------------------------------- 

# PASSO 3: CÁLCULO DAS MÉTRICAS 

# As métricas são calculadas e armazenadas em variáveis separadas. 

#------------------------------------------------------------------------------- 

  

# 1. Grau de Centralidade (Degree Centrality) - Valores brutos 

deg <- degree(g, mode = "all") 

  

# 2. Centralidade de Intermediação (Betweenness Centrality) - Normalizada para 0-1 

bet <- betweenness(g, directed = FALSE, normalized = TRUE) 

  

# 3. Centralidade de Proximidade (Closeness Centrality) - Normalizada para 0-1 

clo <- closeness(g, mode = "all", normalized = TRUE) 

  

# 4. Centralidade de Autovetor (Eigenvector Centrality) - Inerentemente normalizada 

eig <- eigen_centrality(g, directed = FALSE)$vector 

  

# 5. Coeficiente de Agrupamento Local (Clustering Coefficient) 

clu <- transitivity(g, type = "local") 

# Nós com grau < 2 resultam em NaN (Not a Number). Substituímos por 0. 

clu[is.nan(clu)] <- 0 

  

#------------------------------------------------------------------------------- 

# PASSO 4: EXPORTAÇÃO DOS DADOS PARA ARQUIVOS EXCEL 

# Gera 7 arquivos .xlsx no seu diretório de trabalho. 

#------------------------------------------------------------------------------- 

  

# ---- Matriz de Adjacência ---- 

# Obtém a matriz binária (0 e 1). 

adj_matrix <- as_adjacency_matrix(g, sparse = FALSE) 

adj_df <- as.data.frame(adj_matrix) 

# Nomeia as linhas e colunas com os IDs dos indivíduos. 

colnames(adj_df) <- V(g)$name 

rownames(adj_df) <- V(g)$name 

  

# ---- Arquivos de Métricas Individuais ---- 

# Cria um data.frame para cada métrica, com ID e score. 

df_deg <- data.frame(Individuo = V(g)$name, Grau = deg) 

df_bet <- data.frame(Individuo = V(g)$name, Intermediacao = bet) 

df_clo <- data.frame(Individuo = V(g)$name, Proximidade = clo) 

df_eig <- data.frame(Individuo = V(g)$name, Autovetor = eig) 

df_clu <- data.frame(Individuo = V(g)$name, Agrupamento = clu) 

  

# ---- NOVO: Arquivo Consolidado de Métricas ---- 

# Une todas as métricas em um único data.frame. 

df_consolidado <- data.frame( 

  Individuo = df_deg$Individuo, 

  Grau = df_deg$Grau, 

  Intermediacao = df_bet$Intermediacao, 

  Proximidade = df_clo$Proximidade, 
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  Autovetor = df_eig$Autovetor, 

  Agrupamento = df_clu$Agrupamento 

) 

  

# ---- Salvando todos os arquivos Excel ---- 

write_xlsx(adj_df, "Matriz_Adjacencia.xlsx") 

write_xlsx(df_deg, "Metrica_Grau.xlsx") 

write_xlsx(df_bet, "Metrica_Intermediacao.xlsx") 

write_xlsx(df_clo, "Metrica_Proximidade.xlsx") 

write_xlsx(df_eig, "Metrica_Autovetor.xlsx") 

write_xlsx(df_clu, "Metrica_Agrupamento.xlsx") 

write_xlsx(df_consolidado, "Metricas_Consolidadas.xlsx") # Salva o novo arquivo 

  

# Imprime uma mensagem de confirmação no console. 

print("Arquivos Excel (incluindo o consolidado) gerados com sucesso.")  

  

#------------------------------------------------------------------------------- 

# PASSO 5: FUNÇÃO AVANÇADA PARA PLOTAGEM DOS GRÁFICOS ESTÁTICOS 

# Esta função centraliza a lógica de criação dos gráficos e das legendas customizadas. 

#------------------------------------------------------------------------------- 

  

# Define um layout fixo para que a posição dos nós seja a mesma em todos os gráficos. 

l <- layout_with_fr(g) 

  

# Define a paleta de cores (gradiente de azul para vermelho). 

col_palette <- colorRampPalette(c("blue", "red")) 

  

# Função principal para criar e salvar os gráficos. 

plot_metric <- function(graph, layout, metric_values, metric_name, file_name, 

is_normalized) { 

   

  # Abre um dispositivo de salvamento PNG com alta resolução (150 DPI). 

  png(file_name, width = 1200, height = 1200, res = 150) 

   

  # Ajusta as margens para dar espaço ao texto da fonte. 

  par(mar = c(5, 1, 2, 1)) 

   

  # --- Mapeamento de Cores para os Nós --- 

  # 'na.rm = TRUE' torna o código robusto contra erros de valores ausentes (NA). 

  min_val <- min(metric_values, na.rm = TRUE) 

  max_val <- max(metric_values, na.rm = TRUE) 

  range_val = max_val - min_val 

  if (range_val == 0) range_val = 1.0 

  norm_vals <- (metric_values - min_val) / range_val 

  V(graph)$color <- col_palette(101)[round(norm_vals * 100) + 1] 

   

  # --- Plotagem do Gráfico --- 

  plot(graph, 

       layout = layout, 

       vertex.label = NA, 

       vertex.size = 10, 

       edge.width = 1.5, 

       edge.color = "grey60", 

       main = NULL 

  ) 

   

  # --- Adiciona o Texto da Fonte --- 
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  mtext("Fonte: Dados simulados pelo autor, 2025.", side = 1, line = 3, adj = 0.5, cex = 

1.2) 

   

  # --- Lógica da Legenda Customizada --- 

  if (is_normalized) { 

    breaks <- c(0, 0.2, 0.4, 0.6, 0.8, 1.0) 

    value_bins <- cut(metric_values, breaks = breaks, include.lowest = TRUE) 

    counts <- table(value_bins) 

    labels <- c("0.00-0.20", "0.20-0.40", "0.40-0.60", "0.60-0.80", "0.80-1.00") 

    midpoints <- c(0.1, 0.3, 0.5, 0.7, 0.9) 

    legend_colors <- col_palette(101)[round(midpoints * 100) + 1] 

     

  } else { 

    breaks <- quantile(metric_values, probs = seq(0, 1, length.out = 6), na.rm = TRUE) 

    breaks <- unique(round(breaks, 0)) 

    midpoints <- (head(breaks, -1) + tail(breaks, -1)) / 2 

    value_bins <- cut(metric_values, breaks = breaks, include.lowest = TRUE) 

    counts <- table(value_bins) 

    labels <- paste(head(breaks, -1), "-", tail(breaks, -1)) 

    norm_midpoints <- (midpoints - min_val) / range_val 

    legend_colors <- col_palette(101)[round(norm_midpoints * 100) + 1] 

  } 

   

  final_labels <- paste0(labels, " (", counts, ")") 

   

  # --- Desenha a Legenda no Gráfico --- 

  legend( 

    "bottomright", 

    legend = final_labels, 

    fill = legend_colors, 

    title = metric_name, 

    bty = "n", 

    cex = 0.9 

  ) 

   

  dev.off() 

} 

  

#------------------------------------------------------------------------------- 

# PASSO 6: GERAÇÃO DE TODOS OS GRÁFICOS ESTÁTICOS 

# Chama a função de plotagem para cada uma das cinco métricas. 

#------------------------------------------------------------------------------- 

  

plot_metric(g, l, deg, "Grau de Centralidade", "Grafico_Estatico_Grau.png", is_normalized = 

FALSE) 

plot_metric(g, l, bet, "Centralidade de Intermediação", 

"Grafico_Estatico_Intermediacao.png", is_normalized = TRUE) 

plot_metric(g, l, clo, "Centralidade de Proximidade", "Grafico_Estatico_Proximidade.png", 

is_normalized = TRUE) 

plot_metric(g, l, eig, "Centralidade de Autovetor", "Grafico_Estatico_Autovetor.png", 

is_normalized = TRUE) 

plot_metric(g, l, clu, "Coeficiente de Agrupamento", "Grafico_Estatico_Agrupamento.png", 

is_normalized = TRUE) 

# Imprime uma mensagem final de confirmação. 

print("Processo concluído! Os 5 gráficos PNG foram gerados com sucesso.") 
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Linhas de Código 2: 
 #------------------------------------------------------------------------------- 

# PASSO 1: CONFIGURAÇÃO DO AMBIENTE 

# Garante que os pacotes necessários estão instalados e carregados. 

#------------------------------------------------------------------------------- 

  

# Pacote para análise de redes 

if (!require("igraph")) { 

  install.packages("igraph") 

} 

library(igraph) 

  

# Pacote para exportação para o formato Excel 

if (!require("writexl")) { 

  install.packages("writexl") 

} 

library(writexl) 

  

# Pacote para visualização interativa de redes 

if (!require("visNetwork")) { 

  install.packages("visNetwork") 

} 

library(visNetwork) 

  

  

#------------------------------------------------------------------------------- 

# PASSO 2: CRIAÇÃO DA REDE SOCIAL 

# set.seed(42) garante a reprodutibilidade dos resultados. 

#------------------------------------------------------------------------------- 

  

# Define a semente de reprodutibilidade para 42. 

set.seed(42) 

  

# Cria um gráfico de rede com 50 nós (indivíduos). 

# 'sample_gnp' cria um gráfico aleatório do modelo Erdos-Renyi. 

# n = 50 é o número de nós. 

# p = 0.10 é a probabilidade de uma conexão existir entre quaisquer dois nós. 

g <- sample_gnp(n = 50, p = 0.10) 

  

# Define os nomes dos vértices (nós) como "Ind_1", "Ind_2", ..., "Ind_50". 

V(g)$name <- paste0("Ind_", 1:vcount(g)) 

  

  

#------------------------------------------------------------------------------- 

# PASSO 3: CÁLCULO DAS MÉTRICAS 

# As métricas são calculadas e armazenadas em variáveis separadas. 

#------------------------------------------------------------------------------- 

  

# 1. Grau de Centralidade (Degree Centrality) - Valores brutos 

deg <- degree(g, mode = "all") 

  

# 2. Centralidade de Intermediação (Betweenness Centrality) - Normalizada para 0-1 

bet <- betweenness(g, directed = FALSE, normalized = TRUE) 

# 3. Centralidade de Proximidade (Closeness Centrality) - Normalizada para 0-1 

clo <- closeness(g, mode = "all", normalized = TRUE) 
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# 4. Centralidade de Autovetor (Eigenvector Centrality) - Inerentemente normalizada 

eig <- eigen_centrality(g, directed = FALSE)$vector 

  

# 5. Coeficiente de Agrupamento Local (Clustering Coefficient) 

clu <- transitivity(g, type = "local") 

# Nós com grau < 2 resultam em NaN (Not a Number). Substituímos por 0 para consistência. 

clu[is.nan(clu)] <- 0 

  

#------------------------------------------------------------------------------- 

# PASSO 4: EXPORTAÇÃO DOS DADOS PARA ARQUIVOS EXCEL 

# Gera 7 arquivos .xlsx no seu diretório de trabalho. 

#------------------------------------------------------------------------------- 

  

# ---- Matriz de Adjacência ---- 

# Obtém a matriz binária (0 e 1). 

adj_matrix <- as_adjacency_matrix(g, sparse = FALSE) 

adj_df <- as.data.frame(adj_matrix) 

# Nomeia as linhas e colunas com os IDs dos indivíduos. 

colnames(adj_df) <- V(g)$name 

rownames(adj_df) <- V(g)$name 

  

# ---- Arquivos de Métricas Individuais ---- 

# Cria um data.frame para cada métrica, com ID e score. 

df_deg <- data.frame(Individuo = V(g)$name, Grau = deg) 

df_bet <- data.frame(Individuo = V(g)$name, Intermediacao = bet) 

df_clo <- data.frame(Individuo = V(g)$name, Proximidade = clo) 

df_eig <- data.frame(Individuo = V(g)$name, Autovetor = eig) 

df_clu <- data.frame(Individuo = V(g)$name, Agrupamento = clu) 

  

# ---- Arquivo Consolidado de Métricas ---- 

# Une todas as métricas em um único data.frame. 

df_consolidado <- data.frame( 

  Individuo = df_deg$Individuo, 

  Grau_Centralidade = df_deg$Grau, 

  Intermediacao_Centralidade = df_bet$Intermediacao, 

  Proximidade_Centralidade = df_clo$Proximidade, 

  Autovetor_Centralidade = df_eig$Autovetor, 

  Coeficiente_Agrupamento = df_clu$Agrupamento 

) 

  

# ---- Salvando todos os arquivos Excel ---- 

write_xlsx(adj_df, "Matriz_Adjacencia.xlsx") 

write_xlsx(df_deg, "Metrica_Grau.xlsx") 

write_xlsx(df_bet, "Metrica_Intermediacao.xlsx") 

write_xlsx(df_clo, "Metrica_Proximidade.xlsx") 

write_xlsx(df_eig, "Metrica_Autovetor.xlsx") 

write_xlsx(df_clu, "Metrica_Agrupamento.xlsx") 

write_xlsx(df_consolidado, "Metricas_Consolidadas.xlsx") # Salva o novo arquivo 

  

# Imprime uma mensagem de confirmação no console. 

print("Arquivos Excel (incluindo o consolidado) gerados com sucesso.") 

  

#------------------------------------------------------------------------------- 

# PASSO 5: PREPARAÇÃO DOS DADOS PARA VISNETWORK 

# visNetwork requer os dados em um formato específico: um data.frame para os nós 

# e um data.frame para as arestas. 

#-------------------------------------------------------------------------------  
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# Cria o data.frame de NÓS (nodes) com a coluna 'id' obrigatória. 

nodes <- data.frame(id = V(g)$name, label = V(g)$name) 

# Cria o data.frame de ARESTAS (edges) com as colunas 'from' e 'to' obrigatórias. 

edges <- as_data_frame(g, what = "edges") 

  

#------------------------------------------------------------------------------- 

# PASSO 6: FUNÇÃO AVANÇADA PARA CRIAR GRÁFICOS INTERATIVOS 

# Esta função centraliza toda a lógica de criação dos gráficos. 

#------------------------------------------------------------------------------- 

  

create_interactive_graph <- function(nodes_df, edges_df, metric_values, metric_name, 

file_name) { 

   

  # Adiciona os valores da métrica ao data.frame dos nós. 

  nodes_df$metric <- metric_values 

   

  # Cria o texto do tooltip (informação ao passar o mouse), formatado com HTML. 

  nodes_df$title <- paste0("<p><b>", nodes_df$id, "</b><br>", 

                           "Métrica (", metric_name, "): ", round(nodes_df$metric, 4), 

"</p>") 

   

  # Define que o tamanho do nó será proporcional ao valor da métrica. 

  nodes_df$value <- nodes_df$metric 

   

  # Define a paleta de cores (gradiente de azul para vermelho). 

  col_palette <- colorRampPalette(c("#3377FF", "#FF3333"))(101) 

   

  # Normaliza os valores da métrica para mapear na paleta de cores (de 1 a 101). 

  # 'na.rm = TRUE' garante que o código não falhe se houver valores NA. 

  min_val <- min(nodes_df$metric, na.rm = TRUE) 

  max_val <- max(nodes_df$metric, na.rm = TRUE) 

  range_val <- if (max_val - min_val == 0) 1 else max_val - min_val 

  nodes_df$color <- col_palette[round(((nodes_df$metric - min_val) / range_val) * 100) + 1] 

   

  # Prepara os dados para a legenda, garantindo que o número de itens esteja correto. 

  legend_nodes <- data.frame( 

    label = round(seq(from = min_val, to = max_val, length.out = 5), 2), 

    shape = "dot", 

    color = col_palette[round(seq(from = 0, to = 100, length.out = 5)) + 1] 

  ) 

   

  # Cria o gráfico interativo. 

  interactive_graph <- visNetwork( 

    nodes = nodes_df,  

    edges = edges_df, 

    # Adiciona o rodapé com a informação da fonte. 

    footer = "Fonte: Dados simulados pelo autor, 2025." 

  ) %>% 

    # Define o layout da rede (algoritmo Fruchterman-Reingold). 

    visIgraphLayout(layout = "layout_with_fr") %>% 

    # Configurações dos nós (tamanho, cor, borda, sombra). 

    visNodes( 

      size = "value", scaling = list(min = 10, max = 30), # Define tamanho mínimo e máximo 

      color = list(background = "color", border = "#333333", highlight = "yellow"), 

      shadow = list(enabled = TRUE, size = 10) 

    ) %>% 

    # Configurações das arestas (cor cinza escura para destaque). 
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    visEdges( 

      color = list(color = "#888888", highlight = "#555555"), 

      smooth = list(enabled = TRUE, type = "cubicBezier", roundness = 0.7) 

    ) %>% 

    # Configura a legenda interativa. 

    visLegend( 

      useGroups = FALSE, 

      main = list(text = paste("Legenda:", metric_name), style = "font-size:14px; font-

weight:bold;"), 

      position = "right", 

      addNodes = legend_nodes, 

      stepY = 35 # Aumenta o espaçamento vertical na legenda. 

    ) %>% 

    # Adiciona opções de interação (zoom, botões de navegação). 

    visInteraction( 

      navigationButtons = TRUE, 

      tooltipDelay = 0 # Mostra o tooltip instantaneamente. 

    ) %>% 

    # Adiciona um menu para exportar o gráfico como PNG. 

    visExport() 

   

  # Salva o gráfico como um arquivo HTML autônomo. 

  visSave(interactive_graph, file = file_name, selfcontained = TRUE) 

   

  # Retorna o objeto do gráfico para que ele seja exibido no Viewer do RStudio. 

  return(interactive_graph) 

}  

  

#------------------------------------------------------------------------------- 

# PASSO 7: GERAÇÃO DE TODOS OS GRÁFICOS INTERATIVOS 

# Chama a função de plotagem para cada uma das cinco métricas. 

#------------------------------------------------------------------------------- 

  

print("Gerando os 5 gráficos interativos... O último aparecerá na aba 'Viewer'.") 

  

# 1. Gráfico de Grau 

create_interactive_graph(nodes, edges, deg, "Grau de Centralidade", 

"Grafico_Interativo_Grau.html") 

# 2. Gráfico de Intermediação 

create_interactive_graph(nodes, edges, bet, "Centralidade de Intermediação", 

"Grafico_Interativo_Intermediacao.html") 

# 3. Gráfico de Proximidade 

create_interactive_graph(nodes, edges, clo, "Centralidade de Proximidade", 

"Grafico_Interativo_Proximidade.html") 

# 4. Gráfico de Autovetor 

create_interactive_graph(nodes, edges, eig, "Centralidade de Autovetor", 

"Grafico_Interativo_Autovetor.html") 

# 5. Gráfico de Coeficiente de Agrupamento 

create_interactive_graph(nodes, edges, clu, "Coeficiente de Agrupamento", 

"Grafico_Interativo_Agrupamento.html") 

  

print("--------------------------------------------------") 

print("Processo concluído!") 

print("Os 5 gráficos interativos foram salvos como arquivos .html no seu diretório de 

trabalho.") 
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APÊNDICE D - MATRIZ DE ADJACÊNCIA 
 

Ind_1 Ind_2 Ind_3 Ind_4 Ind_5 Ind_6 Ind_7
Ind_1 0 0 0 1 1 0 0
Ind_2 0 0 0 0 0 0 0
Ind_3 0 0 0 0 0 0 0
Ind_4 1 0 0 0 1 0 0
Ind_5 1 0 0 1 0 1 0
Ind_6 0 0 0 0 1 0 0
Ind_7 0 0 0 0 0 0 0
Ind_8 0 0 1 0 0 1 0
Ind_9 0 0 0 0 0 0 0  

Nota: “Ind_1” quer dizer “Indivíduo identificado com o número 1”; “Ind_2” quer dizer 
“Indivíduo identificado com o número 2”. E assim por diante. 
 

Completa, neste link:  

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_Dados_
TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt/Matriz_Adjacência.xls
x 

 

APÊNDICE E - MÉTRICAS EMPREGADAS 
 
Individuo Grau_Centralidade Intermediação Proximidade Autovetor Agrupamento
Ind_1 7 0,066325289 0,449541284 0,870733271 0,142857143
Ind_2 1 0 0,284883721 0,080834589 0
Ind_3 2 0,000957645 0,326666667 0,194030853 0
Ind_4 7 0,052237331 0,4375 0,822029434 0,142857143
Ind_5 9 0,095120342 0,462264151 1 0,111111111
Ind_6 4 0,017188344 0,365671642 0,393066911 0
Ind_7 2 0,002579365 0,340277778 0,219408572 0
Ind_8 6 0,047709702 0,385826772 0,436178191 0
Ind_9 2 0,00212585 0,276836158 0,071326888 0  
 

Completa, neste link: 

https://d.docs.live.net/b6acd41724aa5058/Documents/Matemática_Ciência_Dados_
TCC/Escrita_TCC_Especialização_Matemática/Teste_Prompt/Métricas_Consolidada
s.xlsx 

  

https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/Matriz_Adjac%C3%83%C2%AAncia.xlsx
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/Matriz_Adjac%C3%83%C2%AAncia.xlsx
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/Matriz_Adjac%C3%83%C2%AAncia.xlsx
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/M%C3%83%C2%A9tricas_Consolidadas.xlsx
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/M%C3%83%C2%A9tricas_Consolidadas.xlsx
https://d.docs.live.net/b6acd41724aa5058/Documents/Matem%C3%83%C2%A1tica_Ci%C3%83%C2%AAncia_Dados_TCC/Escrita_TCC_Especializa%C3%83%C2%A7%C3%83%C2%A3o_Matem%C3%83%C2%A1tica/Teste_Prompt/M%C3%83%C2%A9tricas_Consolidadas.xlsx

