
Software Dependency Version Migration:
A Rapid Review on Motivations, Techniques, Tools and Challenges

Arthur V. B. da Silvaa, Leopoldo Teixeirab, Wesley K. G. Assunçãoc, Bruno Cartaxoa

aFederal Institute of Pernambuco, Recife, Brazil
bFederal University of Pernambuco, Recife, Brazil

cNorth Carolina State University, Raleigh, United States of America

Abstract

Context: Modern software development relies heavily on frequent updates to dependencies (e.g. third-party libraries,
frameworks and APIs), which introduce the need for consistent and efficient migration practices to avoid breaking
changes. As these dependencies evolve, developers face the challenge of adapting their code-bases to maintain compati-
bility, security, and performance.
Goal: We investigate the current landscape of dependency version migration, focusing on identifying the motivations,
techniques, tools, and challenges to conduct such activity. The study also aims to understand the strategies to detect
the need for dependency migration and the trade-offs involved in these decisions.
Method: We conducted a rapid review of the literature using the Scopus search engine, which returned 2,637 papers in
February 2025. After applying predefined inclusion and exclusion criteria, we ended up with 63 included studies, which
we extracted data to answer each of the research questions.
Results: The findings indicate that developers rarely migrate dependencies unless strongly motivated by bug fixes,
compatibility, or security fixes. The strategies to identify dependencies that require updates rely on automated tools or
methods. Typically, strategies to detect breaking changes are manual inspection or the use of specialized tools. Several
tools and strategies have been proposed to support dependency updates, many of which rely on static analysis, rule-based
transformations, or example-driven techniques. However, these tools often involve trade-offs between precision, usability,
and manual effort.
Conclusions: This review highlights that dependency migration is not a common practice and when it happens it is
for reasons of fixes and compatibility. The proposed strategies to identify dependencies that need to be updated rely on
automated tools, on the other hand, the strategies to identify braking changes varies between cases using manual and
cases using automation. Furthermore, there is no silver bullet solution in the dependency migration techniques, they
have different proposals and specificity.

Keywords: Library Migration, Code Migration Tools, Dependency Management, Software Evolution, Migration
Challenges

1. Introduction

Modern software development heavily depends on third-
party libraries, frameworks, and APIs to accelerate de-
velopment, encourage reuse, and improve maintainability.
However, the evolution of these dependencies, especially
those that introduce breaking changes, often forces devel-
opers to adapt their systems to ensure continued func-
tionality. In a large-scale study of the Maven repository,
Raemaekers et al. [8] found that breaking changes still
occur even when semantic versioning is used, suggesting
that updating dependencies may lead to unexpected risks.

Email addresses: arthurvini2703@gmail.com (Arthur V. B. da
Silva), lmt@cin.ufpe.br (Leopoldo Teixeira), wguezas@ncsu.edu
(Wesley K. G. Assunção), brunocartaxo@gmail.com (Bruno
Cartaxo)

The prevalence of breaking changes, many systems con-
tinue to rely on outdated dependencies, even in critical
web applications. Lauinger et al. [6] showed that a sig-
nificant portion of websites include obsolete and vulnera-
ble JavaScript libraries, indicating that dependency ver-
sion migration is not a consistently adopted practice in
projects.

Based on these findings, dependency version migration
has some impediments, but is needed to avoid obsolete
and vulnerable features that can result in security issues.
According to this information, one needs to understand
the migration of dependency versions.

In this paper, we present a Rapid Review of the lit-
erature on dependency version migration. The goal is to
synthesize existing knowledge and evidence on the motiva-
tions, techniques, tools, and challenges to conduct such an
activity. The study is guided by seven Research Questions

Federal Institute of Pernambuco October 15, 2025

(RQs), which were answered with findings from 63 out of
2,637 articles selected from a search conducted in Scopus.

In summary, this paper makes the following major con-
tributions:

• Investigates whether developers migrate to new ver-
sions and examines the reasons behind their deci-
sions;

• Surveys strategies for identifying dependencies that
need to be updated, as well as the strategies for de-
tecting updates that introduce breaking changes;

• Analyzes the underlying techniques employed by de-
pendency version migration tools, highlighting their
trade-offs and identifying the main solutions avail-
able.

The remainder of this paper is structured as follows.
Section 2 reviews related work. Section 3 describes the
review method. Section 4 presents the results based on
the seven research questions. Section 5 discusses the im-
plications of these findings. Finally, Section 6 concludes
the paper and outlines the directions for future work.

2. Related Work

The migration of dependencies and the evolution of
APIs have been extensively explored in recent years, par-
ticularly with regard to how developers handle version up-
dates and the challenges posed by breaking changes. Sev-
eral studies have investigated how often developers update
their dependencies in real-world projects.

For instance, Kula et al. [S29] analyzed how security
advisories influence library migration decisions, revealing
that many developers still rely on outdated versions due to
concerns about migration effort and compatibility. Simi-
larly, in the context of mobile development, Morales et al.
[S30] observed that developers tend to postpone updates to
third-party libraries, often due to perceived migration ef-
fort or uncertainty regarding breaking changes introduced
in newer versions.

Other studies have focused on the tools and techniques
available to support automated or semi-automated migra-
tion. Dig et al. [S63] proposed using refactorings to au-
tomate component updates, and presented tools capable
of transforming client code based on change logs. Hora
and Robbes [S13] conducted a comprehensive review of
techniques for inferring API changes, highlighting static
and dynamic analysis approaches. Moreover, Bavota et
al. [S32] provided an experience report on the practical
use of automated migration tools in the Android ecosys-
tem, identifying trade-offs and integration challenges.

Several secondary studies have investigated different
aspects of software modernization and legacy system mi-
gration. Althani and Khaddaj [1] conducted a systematic
review focused on the migration of legacy systems, identi-
fying challenges related to data, architecture, and interface

transformation. Their findings are particularly relevant in
the context of dependency migration, as legacy systems
often rely on outdated components, and their migration
to modern dependencies involves complex re-engineering
of both the code and the architecture.

Similarly, Assunção et al. [2] provided an overview
of contemporary software modernization strategies, high-
lighting the challenges of integrating new dependencies
into existing systems and categorizing the driving forces
behind modernization initiatives. These studies under-
score the broad challenges involved in modernizing and
evolving software systems, but often focus on system-level
modernization rather than the specific issue of dependency
migration.

To accelerate evidence collection in software engineer-
ing, recent studies have adopted rapid review methodolo-
gies. Cartaxo et al. [3] discussed the role of rapid re-
views as an efficient alternative to full systematic reviews,
especially when quick decision-making is required in in-
dustry. They argue that, when carefully planned, rapid
reviews can provide relevant insights without compromis-
ing methodological rigor. In a complementary study, the
authors proposed the use of “evidence briefings” as a for-
mat to improve the transfer of knowledge from reviews to
practitioners [5], emphasizing accessibility and clarity of
findings. These contributions support the feasibility and
value of applying rapid reviews to guide software engineer-
ing practices.

While the existing literature provides valuable insights
into dependency migration, the majority of studies tend to
focus on isolated aspects, such as security vulnerabilities
or migration to specific frameworks. However, there re-
mains a lack of consolidated evidence regarding the tools,
techniques, and challenges that developers face when up-
dating dependencies in modern software ecosystems, espe-
cially those involving complex dependencies and breaking
changes. This gap in the literature motivates the rapid re-
view presented in this study, which aims to synthesize the
current state of knowledge and provide actionable insights
for developers and researchers alike.

3. Research Method

We performed a Rapid Review, following Cartaxo et
al.’s guidelines [4, 3], in order to provide timely evidence
aiming, ultimately, to support decision-making in a real-
world software development project.

3.1. Practical Problem

As highlighted by Cartaxo et al. [4], “Rapid Reviews
should be performed in close collaboration with practition-
ers, bounded to practical problems, and conducted within
practitioners context”.

In that regard, this rapid review (RR) was conducted
in close collaboration with a practitioner, Bruno Cartaxo,

2

of Zulu, a company that develops software tools for devel-
opers. The practitioner expressed interest in understand-
ing how software projects manage dependency version mi-
gration, particularly the trade-offs among tools and their
underlying techniques for automating or semi-automating
client code transformations to address breaking changes
caused by dependency updates.

Bruno Cartaxo validated all activities of this RR pro-
cess and actively participated in the definition of the pro-
tocol and selection criteria.

3.2. Research Questions

Here we present the research questions of this study,
which guided the search strategy, selection of primary stud-
ies, and data extraction:

• RQ1: Do developers commonly migrate their
dependencies to newer versions?
This question investigates whether dependency mi-
gration is a frequent practice in real-world software
development.

• RQ2: What motivates developers to migrate
dependencies to newer versions?
Here, we explore the common drivers for updating
dependencies.

• RQ3: What are the strategies to identify de-
pendencies that need to be updated?
This question focuses on the strategies and tools used
to locate deprecated or outdated API usages in a
codebase.

• RQ4: What are the strategies to identify de-
pendency’s version migration that provoke break-
ing changes?
We examine the mechanisms employed to identify
and understand breaking changes, whether manually
or using automated tools.

• RQ5: What tools have been proposed to sup-
port dependency version migration?
This question surveys existing tools that aid in the
migration process. In particular, tools that auto-
mates or semi-automates breaking changes in the
client code when migrating to newer dependency ver-
sions?

• RQ6: What are the underlying techniques
used by these dependency version migration
tools?
We categorize and analyze the underlying techniques
adopted by migration tools (e.g. AI driven, syntactic
driven, semantic drive, etc).

• RQ7: What are the trade-offs of existing tools
and techniques?
This question discusses the limitations, performance
concerns, required human effort, and generalization
issues faced by current approaches.

By addressing these questions, we aim to synthesize
and characterize the current state of research and practice
in dependency version migration.

3.3. Search Strategy

We used Scopus1 as the exclusive database for our lit-
erature search, due to its comprehensive indexing of high-
quality, peer-reviewed computer science publications, as
already validated by Mourão et al. [7]. On February
27, 2025, we executed a structured search query targeting
papers published from 2015 onwards (a timeframe of 10
years) with terms related to libraries, APIs, frameworks,
and dependencies in the context of migration, evolution, or
versioning. The following query returned a total of 2,637
papers.

The gray literature was excluded from this review. Since
the practitioner’s company, Zulu, already maintains inter-
nal data and analyses related to practical migration expe-
riences (as reported by Bruno Cartaxo), the practitioner
sought to complement this industrial perspective with ev-
idence from the state-of-the-art in academic research.

Search String: TITLE-ABS-KEY ((librar* OR api
OR framework OR dependenc*) W/0 (migrat* OR up-
dat* OR chang* OR deprecat* OR evol* OR refact* OR
version*)) AND PUBYEAR >2004 AND PUBYEAR
<2026 AND (LIMIT-TO (PUBSTAGE , ”final”))
AND (LIMIT-TO (SUBJAREA , ”COMP”))

3.4. Exclusion Criteria

In order to refine the scope of the review and ensure
relevance, we defined a set of exclusion criteria. Papers
were excluded if they:

EC1 were not written in English

EC2 were not peer-reviewed

EC3 were published before 2005

EC4 did not provide relevant insights to any of the de-
fined research questions

EC5 focused exclusively on techniques for migrating be-
tween different dependencies (e.g. from one library
to another) rather than version migration of the same
dependency.

These criteria were applied in a multi-phase filtering
process. During the first phase, we conducted a title-
based screening of the 2,637 initial results. Four review-
ers independently evaluated separate subsets of the papers.
Thus, each paper was analyzed by a single person, as pre-
conized by RRs’ guideline [4] At this phase, papers could
be marked as In, Out, or Maybe — with “Maybe” indi-
cating uncertainty or a need for further inspection. After

1https://www.scopus.com

3

https://www.scopus.com

this phase, the number of papers was reduced to 438 (sum
of “Ins” and “Maybes”).

In the second phase, we reviewed the abstract of each
of the 438 remaining papers. This was again carried out by
the same four reviewers, independently and without pair
cross-checking. The same three labels (In, Out, Maybe)
were used, and this step reduced the dataset to 212 papers.

The final screening phase involved reading the full
text of the 212 papers. This step was performed solely
by the first author, who decided on inclusion using only
the “In” or “Out” labels. At the end of this phase, a final
set of 63 papers was selected for inclusion in this RR for
data extraction.

This multi-stage filtering process is summarized in the
following Figure 1, which illustrates the number of papers
retained after each phase of exclusion. The spreadsheets
of the selection process are publicly available 2.

Database Search 2,637

Title Filter 438

Abstract Filter 212

Paper Filter 63

Data Extraction

Figure 1: Systematic paper filtering

3.5. Data Extraction
In parallel with the final screening, we designed a form

to collect relevant information from each included study.
For each of the 63 selected papers, we recorded which of
the seven research questions the paper has addressed. A
dedicated spreadsheet was used to track the mapping be-
tween studies and RQs. This mapping facilitated the syn-
thesis of evidence across studies and helped organize the
results by question. The forms and spreadsheets of the
data extraction process are publicly available 3.

4. Results

This section presents the results of the data extraction
process based on the 63 primary studies selected through

2https://drive.google.com/drive/folders/

1zIwYSCik4Bsw7I45P4p6Fzm_4TbfHN4j?usp=sharing
3https://drive.google.com/drive/folders/

1jsTJKQHf9omDxEXb21o2HL5uL_Hmot0t?usp=sharing

the rapid review. The analysis aimed to answer the seven
predefined research questions, each addressing a specific
aspect of dependency version migration in software sys-
tems. For each RQ, we synthesized the findings across
the studies, highlighting patterns, tools, techniques, and
trade-offs reported in the literature.

The results are organized in the following subsections,
one for each research question (RQ1 to RQ7), where we
summarize the main insights supported by concrete exam-
ples and references to the reviewed studies.

4.1. RQ1: Do developers commonly migrate their depen-
dencies to newer versions?

A total of 6 studies discussed whether developers actu-
ally migrate to newer dependency versions. These works
[[S29], [S30], [S35], [S57], [S58], [S61] report that migration
to newer versions is not a common practice.

Kula et al. [S29] found that 81.5% of the systems they
studied still relied on outdated dependencies. This result
comes from the Library Residue metric, which measures
the proportion of systems still using an outdated version
of a library after its peak usage. Analyzing 2,736 depen-
dencies from 48,495 Java systems on GitHub, the average
ratio of current usage to peak usage was 81.5%.

Similarly, Salza et al. [S57] observed that only 15.5%
of library uses were consistently updated by developers.
This result reflects the pattern of ’diligent updates’, where
developers consistently update libraries to the latest ver-
sion in each development cycle. The authors analyzed
11,626 version histories of Android app libraries using open
coding, with four researchers manually classifying update
practices. Only 1,976 library usages (15.5%) followed this
pattern.

Furthermore, Salza et al. [S30] noted that in 63.0% of
the cases, the authors did not update the libraries’ versions
after their introduction. The authors examined version
histories of 1,126 libraries in 291 Android apps and clas-
sified developer behaviors into five categories. The “Not
Updating” pattern, where libraries were never updated af-
ter their initial use, was found in 63.0% of cases.

In line with this, Jayasyriya et al. [S61] found that
71.6% of dependencies in client systems were not up-to-
date with the latest version available for the library. The
authors analyzed 18,415 Maven artifacts which declared
142,355 direct dependencies, of which 71.6% were not up-
to-date.

A survey conducted by Zaitsev et al. [S35] with 36
developers has shown that they update their dependencies,
but rarely. Three-quarters of the client developers update
the dependencies version at least twice a year, and less
than a half do it three times a year or more often.

In addition, Sawant et al. [S58] asked developers why
they would not upgrade the version of the API they were
using and identified two major reasons: The cost involved
in the upgrade was often not worth it, and since the version
in use was still functioning properly, there was no pressing
need to upgrade.

4

https://drive.google.com/drive/folders/1zIwYSCik4Bsw7I45P4p6Fzm_4TbfHN4j?usp=sharing
https://drive.google.com/drive/folders/1zIwYSCik4Bsw7I45P4p6Fzm_4TbfHN4j?usp=sharing
https://drive.google.com/drive/folders/1jsTJKQHf9omDxEXb21o2HL5uL_Hmot0t?usp=sharing
https://drive.google.com/drive/folders/1jsTJKQHf9omDxEXb21o2HL5uL_Hmot0t?usp=sharing

Based on the synthesis of these findings, we conclude
that:

RQ1 Key Takeaway: Developers rarely update their
dependencies to newer versions.

4.2. RQ2: What motivates developers to migrate depen-
dencies to newer versions?

A total of 2 studies focused discussing the developers’
motivations to migrate dependencies. These works [S57],
[S62] pointed three main motivations.

A survey conducted by Salza et al. [S57] with 73 mobile
developers has shown that avoiding bug propagation and
making the app compatible with new Android releases are
the main reasons why developers update their code.

Furthermore, Yasumatsu et al. [S62] collected 21,046
Android apps and concluded that the security fix cam-
paign was effective in encouraging app developers to adopt
library version updates.

Based on the synthesis of these findings, we conclude
that:

RQ2 Key Takeaway: Developers’ main motivations
to migrate to a new version are: bug fixes, compatibility
and security fixes.

4.3. RQ3: What are the strategies to identify dependencies
that need to be updated?

A total of 2 studies focused on strategies to identify
dependencies that need to be update. These works [S01],
[S06] proposed two strategies.

Kumar et al. [S01] proposed a tool called Vulnerable
Open-Source Dependency Analyzer (VODA) that searches
dependencies and its vulnerabilities across thousands of
open-source repositories simultaneously, considering pre-
vious and current releases.

Furthermore, Navarro et al. [S06] proposed a method
to automatically source API deprecation data for popu-
lar Python libraries by crawling and parsing their release
notes from the web. Their strategy involves extracting li-
braries that use Sphinx for documentation, retrieving their
version history from the PyPI API, and locating their re-
lease notes through programmatic Google searches. Dep-
recations are then parsed from the standardized HTML
structure of the documentation.

RQ3 Key Takeaway: The proposed strategies are us-
ing a tool called VODA that searches for dependencies
with vulnerability and a method to automatically source
API deprecation data for popular Python libraries by
crawling and parsing their release notes from the web.

4.4. RQ4: What are the strategies to identify dependency’s
version migration that provoke breaking changes?

A total of 8 studies focused on strategies to identify de-
pendency’ version migrations that provoke breaking changes.
Among them, the following works — [S05], [S10], [S21],
[S34], [S36], and [S61] — employed automated strategies
by using or proposing tools. On the other hand, the stud-
ies [S08] and [S47] relied on manual strategies.

Automated Strategies, mainly involve comparing
two versions of code and executing algorithms to identify
potential breaking changes.

For instance, Du & Ma [S05] introduced a tool called
AexPy, which detects API breaking changes in Python
packages. Their results demonstrated high precision in
identifying both documented and undocumented breaking
changes across 43 real-world packages.

Similarly, Brito et al. [S10] developed APIDIFF, a tool
that detects API breaking and non-breaking changes based
on three API elements: types, methods, and fields.

Expanding on this, Reyes et al. [S21] proposed Breaking-
Good, which identifies dependency breaking changes using
three inputs, the source code dependency version, the new
dependency version and the source code. Based on these
inputs, the tool determines whether a breaking change has
occurred and provides an explanation for the detected is-
sue.

Zhang et al. [S34] presented PyCombat, which per-
forms static analysis to detect breaking API changes. This
tool operates in two phases: first, it extracts an API knowl-
edge base; second, it detects issues based on the extracted
data.

Other tools include oasdiff, used by Serbout & Pau-
tasso [S36], which is a command line tool and GO package
designed to compare OpenAPI specifications.

Additionally, Jayasuriya et al. [S61] used a tool called
jacimp, that detects breaking changes between two library
versions using two versions of jar files and running a static
analysis on the changes between them.

Manual Strategies, mainly involve updating the de-
pendency version and evaluating whether the system con-
tinues to work correctly, either by executing the code or
running the project’s tests.

For example, Jayasuriya et al. [S08] adopted a manual
approach where they updated the dependency version and
checked whether the code still working as expected. If the
update introduced failures, a breaking change has been
identified.

Likewise, Venturini et al. [S47] applied a similar man-
ual strategy by updating the dependency version, installing
it, and running the project’s test suite. If the tests failed,
they considered it evidence of a breaking change.

Based on the synthesis of these findings, we conclude
that:

5

RQ4 Key Takeaway: The strategies can be manual
— typically involving updating the dependency version
and testing whether the application still works — or au-
tomatic, using tools that compare the two versions of
the code and run algorithms to detect potential breaking
changes.

4.5. RQ5: What tools have been proposed to support de-
pendency version migration?

Among the 63 papers selected for this review, 48 men-
tion at least one automated or semi-automated tool re-
lated to dependency version migration, totaling 45 dis-
tinct tools. This finding underscores the interest in tool-
supported solutions to help developers cope with the chal-
lenges of evolving software dependencies.

Many of the tools identified are proposed within the
papers themselves, with only three studies focusing on
analyzing pre-existing tools [[S13], [S29], [S63]]. In some
cases, a tool appears in more than one paper, such as An-
droEvolve [[S08], [S09]], AppEvolve [[S14], [S15]], and ML-
CatchUp [[S23], [S42]], indicating ongoing development or
evaluation efforts by the research community.

The variety of tools is noteworthy. Some, such as LIB-
SYNC [S02] and HiMa [S03], use advanced techniques like
graph-based and heuristic-driven analysis to recommend
code edits. Others focus on the integration with develop-
ment environments, such as the Paper’s PyCharm Plugin
[S06] or Our Workbench [S28], aiming to embed migra-
tion assistance directly into developers’ workflows. Tools
like APIFix [S11], APIMigrator [S12], and CocciEvolve
[S17] emphasize automated patch generation and migra-
tion script synthesis, while others such as RefactoringCrawler
[S16] and RefactoringMiner 2.0 [S51] specialize in detect-
ing structural changes between versions.

Several tools are domain-specific or target particular
programming languages or ecosystems. For example, DE-
PREWRITER [S27] is tailored to Pharo, Apodini Migra-
tor [S48] supports semantic migrations in Swift, and JS-
FIX [S53] handles JavaScript APIs. This diversity reflects
the varying needs of developers across languages and plat-
forms.

Diverse papers in the amount focused on tools design
specifically for Android ecosystem. These include An-
droEvolve [S08], ApiMigrator [S12], AppEvolve [S14], Coc-
ciEvolve [S17], LIBBANDAID [S18], ACRYL [S26] and
NEAT [S59].

Between these tools focused in the Android ecosystem,
the AppEvolve [S14] was developed first as a solution for
Android API evolution. Building on this approach the
CocciEvolve [S17] was inspired by AppEvolve. Later the
AndroEvolve [S08] as a tool compared to CocciEvolve.
This forms a clear progression in the research, with each
tool refining and adapting the techniques of its predeces-
sor.

A subset of the papers focuses on tools developed as
IDE plugins, allowing developers to use them directly within

their preferred development environments. For instance,
the Paper’s PyCharm Plugin [S06] was built for PyCharm,
while HiMa [S03], CatchUp! [S22], and Trident [S49] were
all designed as plugins for the Eclipse IDE.

Looking at the temporal distribution of the studies in
Figure 2, since 2019, there is a growing interest in tools
to automate or semi-automate dependency version migra-
tions. This trend may reflect the increasing complexity of
software ecosystems and the need for scalable, automated
solutions to manage evolving dependencies.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

2

4

6

8

10

3

1 1

3

1

2

1 1

2

0 0 0

1 1

6

3

5

3 3 3

0

Year

N
u
m
b
er

of
P
ap

er
s

Figure 2: Distribution of papers by publication year for the RQ5,
RQ6 and RQ7

Based on the synthesis of these findings, we conclude
that:

RQ5 Key Takeaway: The development of automated
tools for dependency migration is an active and grow-
ing area of research, with most tools emerging in the
last decade and addressing diverse programming envi-
ronments and challenges.

4.6. RQ6: What are the underlying techniques used by
these dependency version migration tools?

A total of 48 studies addressed the underlying tech-
niques adopted by tools that support dependency version
migration. After analyzing these papers, the techniques
were grouped into four major categories based on their
operational characteristics and methodological focus. A
summary of these findings is presented in Table 1, which
categorizes the papers and techniques by their respective
groups.

AI and Example-Driven Techniques, found in 21
papers, include methods that take advantage of exam-
ples, learning, and artificial intelligence to automate mi-
grations. These approaches typically extract patterns from
real-world migrations, apply machine learning or program
synthesis, or rely on large language models (LLMs) to gen-
erate transformation logic. They are especially effective in

6

adapting to diverse migration contexts and handling less
deterministic cases.

Rule and Pattern-Based Transformations, also
represented in 21 papers, involve defining explicit rules
or reusable patterns for migration. These rules may be
specified manually, inferred from examples, or synthesized
automatically. They are used to express common migra-
tion actions in a structured and repeatable way, offering
control and predictability in the transformation process.

Static and Structural Analysis, the most promi-
nent group, is represented in 29 papers. This category
encompasses techniques that operate by examining the
structure and composition of the code without requiring
its execution. These approaches focus on the syntactic
and structural elements of software systems to identify
potential migration points and assess compatibility with
newer versions of dependencies. Their popularity can be
attributed to their general applicability across languages
and contexts.

Semantic and Contextual Analysis, identified in
10 studies, refers to techniques that analyze not only the
syntax but also the meaning and context of the code. Al-
though less frequent, these methods are valuable for un-
derstanding the implications of migration and avoiding be-
havioral regressions in complex scenarios.

Based on the synthesis of these findings, we conclude
that:

RQ6 Key Takeaway: The most common techniques
used by code migration tools are those grounded in static
and structural analysis. In addition, AI-driven and
example-based methods, along with rule-based transfor-
mations, also play a significant role. Semantic and con-
textual techniques, while less frequent, contribute unique
advantages in specialized scenarios.

4.7. RQ7: What are the trade-offs of existing tools and
techniques?

A total of 48 papers discussed trade-offs, benefits, and
limitations related to tools or approaches supporting de-
pendency migration. These trade-offs are closely tied to
the type of technique employed, as well as factors such as
design decisions, implementation strategies, and tool ma-
turity.

AI and Example-Driven Techniques, this group
includes tools that apply learning, historical analysis, or
reasoning through examples (e.g., LIBSYNC, APIFix, PyE-
volve, MLCatchUp). Tools in this category tend to of-
fer high precision and recall, especially when trained or
calibrated with concrete usage scenarios. However, they
usually have higher computational cost (e.g., LIBSYNC,
HiMa) or rely on datasets of past migrations to perform
well. Their specialized behavior makes them powerful in
solving complex or deep changes, but this often comes at
the expense of generalization and reuse across unrelated
contexts.

Technique/Approach Tools (Papers) Total

AI and Example-Driven Techniques

7 techniques, 21 papers

Artificial Intelligence (AI) [S06], [S19], [S42],
[S52], [S56]

5

Data-Driven [S26] 1

Example-Based [S11], [S12], [S13],
[S14], [S17], [S31],

[S49]

7

History-Based Analysis [S03] 1

Mining Software Reposito-
ries

[S02], [S44] 2

Program Synthesis [S11] 1

Search-Based [S26], [S39], [S52],
[S56]

4

Rule and Pattern-Based Transformation

5 techniques, 21 papers

Domain-Specific Language
(DSL)

[S04] 1

Pattern-Based [S08], [S28], [S40] 3

Refactoring-Based [S24] 1

Rule-Based Transformation [S04], [S11], [S12],
[S13], [S20], [S38],
[S41], [S43], [S46],

[S59]

10

Semantic Patch Language
(SmPL)

[S08], [S54], [S60] 3

Static and Structural Analysis

7 techniques, 29 papers

AST-Based (Abstract Syn-
tax Tree)

[S51] 1

Graph-based Analysis [S02], [S04] 2

Impact Analysis [S18] 1

Lightweight Static Analysis [S04], [S20], [S22],
[S28], [S49]

5

Static Analysis [S06], [S11], [S12],
[S13], [S16], [S39],
[S42], [S47], [S48],
[S50], [S53], [S54],

[S55], [S59]

14

Transformation-Based [S33] 1

Version Diff [S13], [S23], [S51],
[S60]

4

Semantic and Contextual Analysis

4 techniques, 10 papers

Document Analysis [S32] 1

Dynamic Analysis [S13], [S25], [S27],
[S52]

4

Heuristic-Based [S32], [S55], [S59] 3

Method Depreciation [S27] 1

Table 1: Techniques and Papers’ tools Grouped by Category

7

Rule and Pattern-Based Transformations, these
tools (e.g., TAPIR, JaSCUT, DAAMT, Coccinelle4j) lever-
age explicit or inferred rules to automate migration steps.
While often fast and relatively accurate for well-documented
or structured APIs, they still require some degree of man-
ual configuration or predefinition of rules (as seen in TAPIR
and DAAMT). Moreover, their dependency on documenta-
tion quality or pattern availability limits their application
in less predictable migration scenarios. Despite their lim-
itations, they are frequently preferred in production set-
tings due to their deterministic behavior and transparency.

Static and Structural Analysis, tools in this group
(e.g., RefactoringMiner 2.0, SemDiff, ReBa, RELANCER)
are the most frequent in the dataset and tend to focus
on the structural behavior of code without requiring ex-
ecution. These tools are precise in identifying syntactic
and structural differences and are often favored for their
scalability. However, their performance may degrade with
very complex or deeply integrated changes (e.g., struc-
tural transformations across multiple layers). Addition-
ally, some tools (e.g., SemDiff) require a complete version
history, making them less flexible in ad hoc migration sce-
narios.

Semantic and Contextual Analysis, this group in-
cludes tools like Apodini Migrator and JDiff, which at-
tempt to capture meaning beyond code structure. While
potentially powerful in detecting higher-level impacts, they
are often limited in scope or require additional manual in-
tervention. These tools struggle with deep semantic changes,
and their coverage depends heavily on external metadata
(e.g., change logs, semantic tags, contextual cues). As a
result, while insightful, their adoption is still limited due
to the complexity of integrating semantic understanding
into automated workflows.

In summary, different categories of techniques bring
distinct trade-offs to migration tools. While AI-driven and
rule-based tools offer automation and precision, they are
often limited by computational cost or the need for prede-
fined knowledge. Static analysis approaches are scalable
and robust but may lack semantic depth. Meanwhile, se-
mantic techniques show promise for complex changes, yet
still face practical limitations in terms of tooling support
and automation.

Based on the synthesis of these findings, we conclude
that:

RQ7 Key Takeaway: Dependency migration tools
present distinct trade-offs based on the techniques they
employ. While some favor precision and automation,
others prioritize scalability or semantic depth. Choos-
ing the right approach depends on the migration context
and project needs.

5. Discussion

This section presents a comprehensive discussion of the
findings derived from the research questions. The goal is
to interpret the results, highlight their significance, and
reflect on their implications for both research and practice.
In addition, this section addresses potential threats to the
validity of the study.

The discussion is structured into three parts. First,
we summarize and interpret the main findings, organized
by research question. Next, we explore the implications
of these findings, distinguishing between research-oriented
and practice-oriented impacts. Finally, we analyze threats
to the validity of our review.

5.1. Findings

This subsection discusses the key findings obtained from
the analysis of the selected studies per research question.

RQ1: Do developers commonly migrate their
dependencies to newer versions? The review shows
that dependency migration is not yet a widespread or sys-
tematic practice. While some developers perform updates
when necessary, most tend to postpone migrations due to
fear of breaking changes.

RQ2: What motivates developers to migrate de-
pendencies to newer versions? Bug fixes, compatibil-
ity, and security fixes are the main reasons that drive devel-
opers to update dependencies. These findings reflect prac-
tical and technical priorities in software projects, where
stability and risk mitigation often outweigh innovation or
performance gains.

RQ3: What are the strategies to identify de-
pendencies that need to be updated? The proposed
strategies aim in automatic tools or methods to identify
these dependencies that need to be updated.

RQ4: What are the strategies to identify depen-
dency’s version migration that provoke breaking
changes? The strategies found commonly identify either
by using specialized automatic tools or manually testing
the new version.

RQ5: What tools have been proposed to sup-
port dependency version migration? A wide variety
of tools have been proposed to support code migration,
with different scopes, ecosystems, and levels of automa-
tion. Most tools aim to minimize developer effort and
increase migration safety.

RQ6: What are the underlying techniques used
by these dependency version migration tools? Each
class of techniques bring together a range of approaches,
highlighting that there is no silver bullet solution. Tool
design often involves trade-offs between automation, flex-
ibility, and accuracy.

The AI-based and example-driven category includes
techniques that rely on examples, learning, or automated
reasoning, such as Artificial Intelligence, example-based
approaches, and search-based methods.

8

The rule and pattern-based transformation category
encompasses techniques that operate using explicit or in-
ferred rules, including rule-based transformations, pattern-
based techniques, and Semantic Patch Language.

The static and structural analysis category covers meth-
ods that examine code without executing it, such as graph-
based analysis, static analysis, and version differencing.

Lastly, the semantic and contextual category includes
techniques that go beyond the syntactic structure of code,
considering broader aspects like heuristic-based approaches,
documentation analysis, and dynamic analysis.

When examining the techniques individually, rather
than by broader category, the most frequently adopted are
Static Analysis, Rule-Based Transformation, and Example-
Based methods.

RQ7: What are the trade-offs of existing tools
and techniques? Each class of techniques involves trade-
offs that vary according to the underlying strategy em-
ployed.

The AI-based and example-driven tools often achieve
high precision and effectiveness, especially in well defined
domains with available training data. However, they tend
to require more computational resources and are particu-
larly limited in cases where historical examples are scarce
or highly domain-specific.

The rule and pattern-based transformation approaches
are effective when migrations follow consistent, well docu-
mented structures. These techniques are relatively easy to
implement but struggle with flexibility, especially in dy-
namic or poorly documented environments.

The static and structural analysis methods are scal-
able and suitable for large code-bases, offering consistent
results without needing runtime data. They perform well
in projects with strong structure and clear typing but may
miss deeper semantic issues.

Finally, semantic and contextual analysis techniques
are useful for capturing abstract or high-level changes, yet
they often require manual input and exhibit limited scala-
bility. These methods can be less reliable in large-scale or
highly variable code-bases.

5.2. Implications

This subsection presents the implications of the find-
ings from both a research and a practical perspective.

Research. The findings highlight several opportuni-
ties for future research in the area of code migration. First,
further investigation is needed to understand why devel-
opers often avoid applying updates. Second, when code
migration is primarily driven by fixes concerns, is this a
positive indication, or does it point to deeper systemic is-
sue?

Finally, future research could explore how well current
tools integrate with modern development workflows, such
as CI/CD pipelines and integrated development environ-
ments (IDEs), and whether such integration enhances the
adoption and effectiveness of code migration practices.

Practice. The findings suggest that developers could
benefit from improved tooling and documentation prac-
tices to support safer and more frequent code migrations.
In particular, automated tools can substantially reduce the
manual effort involved in identifying breaking changes and
adapting code, thereby making the migration process more
efficient and less error prone.

However, to fully leverage the benefits of such tools,
developers must be aware of the trade-offs associated with
different techniques. Factors such as flexibility, accuracy,
performance, and required developer input vary across tools
and approaches. A clear understanding of these differences
is essential to select the most appropriate solution for a
given project or organizational context.

The findings also suggest that libraries and frameworks
maintainers, should adopt clear semantic versioning prac-
tices, effectively communicate ”breaking changes,” and pro-
vide documentation and tools that facilitate the transition
to new versions. This helps developers adopt updates more
quickly and securely.

5.3. Limitations and Threads to Validity

This subsection discusses the potential threats to the
validity of this study.

In an effort to ensure greater rigor in our research, we
defined clear research questions and employed a structured
data extraction process to ensure consistency in identifying
and categorizing relevant information. Nonetheless, the
interpretation of the data may be influenced by subjective
judgment, particularly in the classification of tools and
techniques across studies.

Although predefined criteria guided the screening pro-
cess, the inclusion and exclusion of studies was carried out
without a peer review step. Each author was responsi-
ble for independently evaluating a subset of the retrieved
papers according to the inclusion and exclusion criteria to
ensure coverage and reduce selection bias. However, in the
final stage, only the first author performed full text eval-
uation and data extraction, which may introduce risks of
systematic bias or oversight during the classification and
interpretation of the studies.

The scope of this review was limited to studies indexed
in the Scopus database, which excludes potentially rele-
vant work published only in other sources not covered by
Scopus, or gray literature. Consequently, some tools, tech-
niques, or insights may not have been captured.

Furthermore, several exclusion criteria were applied to
ensure relevance and quality, including language restric-
tions (EC1), peer-review status (EC2), publication date
(EC3), alignment with research questions (EC4), and fo-
cus on migration between versions of the same library,
language or framework, excluding studies that addressed
inter-library or cross-framework migration (EC5). While
these measures reinforced rigor, they may have limited the
diversity of perspectives and the generalization of the find-
ings

9

Considering the qualitative nature of this rapid review
and its sample of 63 papers, the conclusions should be in-
terpreted with caution. Potential researcher bias and the
rapid review process may limit the depth and robustness
of the findings. Therefore, while the results highlight im-
portant insights and trends, further research with larger
and more comprehensive studies is necessary to validate
and expand these conclusions.

Despite these limitations, we believe that this study
provides valuable insights into the code migration process
and lays a solid foundation for future research and practi-
cal improvements.

6. Conclusion

This study presented a Rapid Review on the topic
of code migration, with the aim of synthesizing current
knowledge on the motivations, techniques, tools, and trade-
offs involved in this process. A total of 63 primary studies
were analyzed to answer seven research questions that span
both theoretical and practical aspects of code migration.

The findings reveal that developers often tend not to
engage in migration unless motivated by specific needs
such as bug fixes, compatibility, or security fixes. Migra-
tion detection varies, with many approaches relying on
manual inspections and others on automated tools.

Furthermore, various techniques are used in migration
tools, including static analysis, rule-based transformations,
and AI-driven approaches, each presenting distinct trade-
offs in terms of precision, usability, and computational
cost.

These results provide a structured overview of cur-
rent migration practices and highlight some research gaps.
Future research should investigate these aspects in more
depth, investigating developer perceptions, organizational
constraints, and the effectiveness of support tools. Future
research will be able to provide further support for this
article, as well as fill in gaps and resolve some limitations
and threads to validity.

Although this review followed a conscientious method-
ology, certain limitations remain. It was restricted to the
Scopus database, peer-reviewed publications in English,
and migration cases within the same library, language, or
framework. In addition, the rapid nature of the review
process may have limited the depth of the analysis.

Overall, the study contributes a consolidated founda-
tion for understanding code migration and points to promis-
ing directions for future research and tool development.

Acknowledgments

The authors would like to thank the academic advisors
involved in this work for their valuable guidance, feedback,
and support throughout the development of this study.

This study was conducted as part of the first author’s
undergraduate thesis project at Instituto Federal de Per-
nambuco.

References

[1] Althani, B., Khaddaj, S., 2018. Systematic review of legacy sys-
tem migration. International Journal of Advanced Computer Sci-
ence and Applications 9 (5), 375–381.

[2] Assunção, W. K., Marchezan, L., Arkoh, L., Egyed, A., Ram-
ler, R., 2020. Contemporary software modernization: Strate-
gies, driving forces, and research opportunities. IEEE Access 8,
186572–186603.

[3] Cartaxo, B., Pinto, G., Soares, S., 2018. The role of rapid reviews
in supporting decision-making in software engineering practice.
In: Proceedings of the 22nd International Conference on Evalu-
ation and Assessment in Software Engineering 2018. EASE ’18.
Association for Computing Machinery, New York, NY, USA, p.
24–34.
URL https://doi.org/10.1145/3210459.3210462

[4] Cartaxo, B., Pinto, G., Soares, S., 2020. Rapid Reviews in Soft-
ware Engineering. Springer International Publishing, Cham, pp.
357–384.
URL https://doi.org/10.1007/978-3-030-32489-6_13

[5] Cartaxo, B., Pinto, G., Vieira, E., Soares, S., 2016. Evidence
briefings: Towards a medium to transfer knowledge from system-
atic reviews to practitioners. ESEM ’16. Association for Comput-
ing Machinery, New York, NY, USA.
URL https://doi.org/10.1145/2961111.2962603

[6] Lauinger, T., Chaudhry, A., Arshad, S., Robertson, W., Wilson,
D., Wills, C., Robertson, W., Kirda, E., 2017. Thou shalt not
depend on me: Analysing the use of outdated javascript libraries
on the web. In: Proceedings of the 2017 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, pp. 389–404.

[7] Mourão, E., Pimentel, J. F., Murta, L., Kalinowski, M., Mendes,
E., Wohlin, C., 2020. On the performance of hybrid search strate-
gies for systematic literature reviews in software engineering. In-
formation and Software Technology 123, 106294.
URL https://www.sciencedirect.com/science/article/pii/

S0950584920300446

[8] Raemaekers, S., van Deursen, A., Visser, J., 2017. Semantic ver-
sioning and impact of breaking changes in the maven repository.
Journal of Systems and Software 129, 140–158.

A. Primary Sources

[S1] Kumar, S.H.B.I.; Sampaio, L.R.; Martin, A.; Brito, A.; Fetzer,
C.. 2024. A Comprehensive Study on the Impact of Vulnera-
ble Dependencies on Open-Source Software. Proceedings of the
International Symposium on Software Reliability Engineering
(ISSRE).

[S2] Nguyen H.A.; Nguyen T.T.; Wilson Jr. G.; Nguyen A.T.; Kim
M.; Nguyen T.N.. 2010. A Graph-based Approach to API
Usage Adaptation. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications,
OOPSLA.

[S3] Meng S.; Wang X.; Zhang L.; Mei H.. 2012. A History-Based
Matching Approach to Identification of Framework Evolution.
Proceedings - International Conference on Software Engineer-
ing.

[S4] Ketkar A.; Ramos D.; Clapp L.; Barik R.; Ramanathan M.K..
2024. A Lightweight Polyglot Code Transformation Language.
Proceedings of the ACM on Programming Languages.

[S5] Du X.; Ma J.. 2022. AexPy: Detecting API Breaking Changes
in Python Packages. Proceedings - International Symposium
on Software Reliability Engineering, ISSRE.

[S6] Navarro N.; Alamir S.; Babkin P.; Shah S.. 2023. An Auto-
mated Code Update Tool for Python Packages. Proceedings -
2023 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2023.

[S7] Jayasuriya D.; Ou S.; Hegde S.; Terragni V.; Dietrich J.; Blincoe
K.. 2025. An extended study of syntactic breaking changes in
the wild. Empirical Software Engineering.

10

https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1145/2961111.2962603
https://www.sciencedirect.com/science/article/pii/S0950584920300446
https://www.sciencedirect.com/science/article/pii/S0950584920300446

[S8] Haryono S.A.; Thung F.; Lo D.; Jiang L.; Lawall J.; Kang H.J.;
Serrano L.; Muller G.. 2022. AndroEvolve automated Android
API update with data flow analysis and variable denormaliza-
tion. Empirical Software Engineering.

[S9] Haryono S.A.; Thung F.; Lo D.; Jiang L.; Lawall J.; Jin Kang
H.; Serrano L.; Muller G.. 2021. AndroEvolve Automated Up-
date for Android Deprecated-API Usages. Proceedings - Inter-
national Conference on Software Engineering.

[S10] Brito A.; Xavier L.; Hora A.; Valente M.T.. 2018. APID-
iff: Detecting API breaking changes. 25th IEEE International
Conference on Software Analysis, Evolution and Reengineer-
ing, SANER 2018 - Proceedings.

[S11] Gao X.; Radhakrishna A.; Soares G.; Shariffdeen R.; Gulwani
S.; Roychoudhury A.. 2021. APIfix: Output-oriented program
synthesis for combating breaking changes in libraries. Proceed-
ings of the ACM on Programming Languages.

[S12] Fazzini M.; Xin Q.; Orso A.. 2020. APIMigrator: An API-
usage migration tool for Android apps. Proceedings - 2020
IEEE/ACM 7th International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2020.

[S13] Robillard M.P.; Bodden E.; Kawrykow D.; Mezini M.; Ratch-
ford T.. 2013. Automated API property inference techniques.
IEEE Transactions on Software Engineering.

[S14] Fazzini M.; Xin Q.; Orso A.. 2019. Automated API-Usage
update for android apps. ISSTA 2019 - Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing
and Analysis.

[S15] Thung F.; Haryono S.A.; Serrano L.; Muller G.; Lawall J.; Lo
D.; Jiang L.. 2020. Automated Deprecated-API Usage Update
for Android Apps: How Far are We?. SANER 2020 - Pro-
ceedings of the 2020 IEEE 27th International Conference on
Software Analysis, Evolution, and Reengineering.

[S16] Dig D.; Johnson R.. 2006. Automated upgrading of component-
based applications. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications,
OOPSLA.

[S17] Haryono S.A.; Thung F.; Kang H.J.; Serrano L.; Muller G.;
Lawall J.; Lo D.; Jiang L.. 2020. Automatic android deprecated-
api usage update by learning from single updated example.
IEEE International Conference on Program Comprehension.

[S18] Duan Y.; Gao L.; Hu J.; Yin H.. 2019. Automatic generation
of non-intrusive updates for third-party libraries in Android ap-
plications. RAID 2019 Proceedings - 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses.

[S19] Almeida A.; Xavier L.; Valente M.T.. 2024. Automatic Library
Migration Using Large Language Models: First Results. Inter-
national Symposium on Empirical Software Engineering and
Measurement.

[S20] Perkins J.H.. 2005. Automatically generating refactorings to
support API evolution. ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering.

[S21] Reyes F.; Baudry B.; Monperrus M.. 2024. Breaking-Good:
Explaining Breaking Dependency Updates with Build Analysis.
Proceedings - 2024 IEEE International Conference on Source
Code Analysis and Manipulation, SCAM 2024.

[S22] Henkel J.; Diwan A.. 2005. CatchUp! capturing and replay-
ing refactorings to support API evolution. Proceedings - 27th
International Conference on Software Engineering, ICSE05.

[S23] Haryono S.A.; Thung F.; Lo D.; Lawall J.; Jiang L.. 2021.
Characterization and Automatic Updates of Deprecated Machine-
Learning API Usages. Proceedings - 2021 IEEE International
Conference on Software Maintenance and Evolution, ICSME
2021.

[S24] Savga L.; Rudolf M.; Götz S.. 2008. ComeBack! A refactoring-
based tool for binary-compatible framework upgrade. Proceed-
ings - International Conference on Software Engineering.

[S25] Zhong H.; Meng N.. 2024. Compiler-Directed Migrating API
Callsite of Client Code. Proceedings - International Conference
on Software Engineering.

[S26] Scalabrino S.; Bavota G.; Linares-Vasquez M.; Lanza M.; Oliveto
R.. 2019. Data-driven solutions to detect API compatibility is-
sues in android: An empirical study. IEEE International Work-
ing Conference on Mining Software Repositories.

[S27] Ducasse S.; Polito G.; Zaitsev O.; Denker M.; Tesone P.. 2022.
Deprewriter: On the fly rewriting method deprecations. Jour-
nal of Object Technology.

[S28] Møller A.; Nielsen B.B.; Torp M.T.. 2020. Detecting locations
in JavaScript programs affected by breaking library changes.
Proceedings of the ACM on Programming Languages.

[S29] Kula R.G.; German D.M.; Ouni A.; Ishio T.; Inoue K. 2018.
Do developers update their library dependencies: An empirical
study on the impact of security advisories on library migration.
Empirical Software Engineering.

[S30] Salza P.; Palomba F.; Di Nucci D.; D’Uva C.; De Lucia A.; Fer-
rucci F.. 2018. Do developers update third-party libraries in
mobile apps. Proceedings - International Conference on Soft-
ware Engineering.

[S31] Leuenberger M.. 2019. Exploring example-driven migration.
ACM International Conference Proceeding Series.

[S32] Lamothe M.; Shang W.. 2018. Exploring the use of automated
API migrating techniques in practice An experience report on
Android. Proceedings - International Conference on Software
Engineering.

[S33] Winter V.L.; Mametjanov A.. 2007. Generative programming
techniques for Java library migration. GPCE’07 - Proceedings
of the Sixth International Conference on Generative Program-
ming and Component Engineering.

[S34] Zhang Z.; Zhu H.; Wen M.; Tao Y.; Liu Y.; Xiong Y.. 2020.
How Do Python Framework APIs Evolve? An Exploratory
Study. SANER 2020 - Proceedings of the 2020 IEEE 27th In-
ternational Conference on Software Analysis, Evolution, and
Reengineering.

[S35] Zaitsev O.; Ducasse S.; Anquetil N.; Thiefaine A.. 2022. How
Libraries Evolve: A Survey of Two Industrial Companies and an
Open-Source Community. Proceedings - Asia-Pacific Software
Engineering Conference, APSEC.

[S36] Serbout S.; Pautasso C.. 2024. How Many Web APIs Evolve
Following Semantic Versioning?. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics).

[S37] Venturini D.; Cogo F.R.; Polato I.; Gerosa M.A.; Wiese I.S..
2023. I Depended on You and You Broke Me: An Empiri-
cal Study of Manifesting Breaking Changes in Client Packages.
ACM Transactions on Software Engineering and Methodology.

[S38] Narasimhan K.; Reichenbach C.; Lawall J.. 2017. Interactive
data representation Migration: Exploiting program dependence
to aid program transformation. PEPM 2017 - Proceedings of
the 2017 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, co-located with POPL 2017.

[S39] Xu S.; Dong Z.; Meng N.. 2019. Meditor: Inference and appli-
cation of API migration edits. IEEE International Conference
on Program Comprehension.

[S40] Xi Y.; Shen L.; Gui Y.; Zhao W.. 2019. Migrating deprecated
API to documented replacement: Patterns and tool. ACM In-
ternational Conference Proceeding Series.

[S41] Štrobl R.; Trońıček Z.. 2013. Migration from deprecated API
in java. SPLASH 2013 - Proceedings of the 2013 Companion
Publication for Conference on Systems, Programming, and Ap-
plications: Software for Humanity.

11

[S42] Haryono S.A.; Thung F.; Lo D.; Lawall J.; Jiang L.. 2021. ML-
CatchUp: Automated Update of Deprecated Machine-Learning
APIs in Python. Proceedings - 2021 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2021.

[S43] Wu W.. 2011. Modeling framework API evolution as a multi-
objective optimization problem. IEEE International Confer-
ence on Program Comprehension.

[S44] Alrubaye H.; Mkaouer M.W.; Ouni A.. 2019. On the use of
information retrieval to automate the detection of third-party
Java library migration at the method level. IEEE International
Conference on Program Comprehension.

[S45] Şavga I.; Rudolf M.; Götz S.; Aßmann U.. 2008. Practical
refactoring-based framework upgrade. GPCE’08: Proceedings
of the ACM SIGPLAN 7th International Conference on Gen-
erative Programming and Component Engineering.

[S46] Dilhara M.; Dig D.; Ketkar A.. 2023. PYEVOLVE: Automat-
ing Frequent Code Changes in Python ML Systems. Proceed-
ings - International Conference on Software Engineering.

[S47] Dig D.; Negara S.; Johnson R.; Mohindra V.. 2008. ReBA:
Refactoring-aware binary adaptation of evolving libraries. Pro-
ceedings - International Conference on Software Engineering.

[S48] Schmiedmayer P.; Bauer A.; Bruegge B.. 2023. Reducing the
Impact of Breaking Changes to Web Service Clients During Web
API Evolution. Proceedings - 2023 IEEE/ACM 10th Inter-
national Conference on Mobile Software Engineering and Sys-
tems, MOBILESoft 2023.

[S49] Kapur P.; Cossette B.; Walker R.J.. 2010. Refactoring refer-
ences for library migration. ACM SIGPLAN Notices.

[S50] Balaban I.; Tip F.; Fuhrer R.. 2005. Refactoring support
for class library migration. Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Appli-
cations, OOPSLA.

[S51] Tsantalis N.; Ketkar A.; Dig D.. 2022. RefactoringMiner 2.0.
IEEE Transactions on Software Engineering.

[S52] Zhu C.; Saha R.K.; Prasad M.R.; Khurshid S.. 2021. Restor-
ing the Executability of Jupyter Notebooks by Automatic Up-
grade of Deprecated APIs. Proceedings - 2021 36th IEEE/ACM
International Conference on Automated Software Engineering,
ASE 2021.

[S53] Nielsen B.B.; Torp M.T.; Moller A.. 2021. Semantic Patches
for Adaptation of JavaScript Programs to Evolving Libraries.
Proceedings - International Conference on Software Engineer-
ing.

[S54] Kang H.J.; Thung F.; Lawall J.; Muller G.; Jiang L.; Lo D..
2019. Semantic patches for java program transformation. Leib-
niz International Proceedings in Informatics, LIPIcs.

[S55] Dagenais B.; Robillard M.P.. 2009. SemDiff: Analysis and
recommendation support for API evolution. Proceedings - In-
ternational Conference on Software Engineerings.

[S56] Ni A.; Ramos D.; Yang A.Z.H.; Lynce I.; Manquinho V.; Mar-
tins R.; Le Goues C.. 2021. SOAR: A synthesis approach for
data science API refactoring. Proceedings - International Con-
ference on Software Engineering.

[S57] Salza P.; Palomba F.; Di Nucci D.; De Lucia A.; Ferrucci F..
2020. Third-party libraries in mobile apps: When, how, and
why developers update them. Empirical Software Engineering.

[S58] Sawant A.A.; Robbes R.; Bacchelli A.. 2019. To react, or not
to react: Patterns of reaction to API deprecation. Empirical
Software Engineering.

[S59] Thung F.; Kang H.J.; Jiang L.; Lo D.. 2019. Towards Generat-
ing Transformation Rules without Examples for Android API
Replacement. Proceedings - 2019 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2019.

[S60] Yamaguchi D.; Iwatsuka T.. 2022. Two-Stage Patch Synthesis
for API Migration from Single API Usage Example. Proceedings
- Asia-Pacific Software Engineering Conference, APSEC.

[S61] Jayasuriya D.; Terragni V.; Dietrich J.; Ou S.; Blincoe K.. 2023.
Understanding Breaking Changes in the Wild. ISSTA 2023 -
Proceedings of the 32nd ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis.

[S62] Yasumatsu T.; Watanabe T.; Kanei F.; Shioji E.; Akiyama M.;
Mori T.. 2019. Understanding the responsiveness of mobile app
developers to software library updates. CODASPY 2019 - Pro-
ceedings of the 9th ACM Conference on Data and Application
Security and Privacy.

[S63] Dig D.. 2005. Using refactorings to automatically update
component-based applications. Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Ap-
plications, OOPSLA.

12

	Introduction
	Related Work
	Research Method
	Practical Problem
	Research Questions
	Search Strategy
	Exclusion Criteria
	Data Extraction

	Results
	RQ1: Do developers commonly migrate their dependencies to newer versions?
	RQ2: What motivates developers to migrate dependencies to newer versions?
	RQ3: What are the strategies to identify dependencies that need to be updated?
	RQ4: What are the strategies to identify dependency’s version migration that provoke breaking changes?
	RQ5: What tools have been proposed to support dependency version migration?
	RQ6: What are the underlying techniques used by these dependency version migration tools?
	RQ7: What are the trade-offs of existing tools and techniques?

	Discussion
	Findings
	Implications
	Limitations and Threads to Validity

	Conclusion

